M

NAVAL
POSTGRADUATE
SCHOOL

MONTEREY, CALIFORNIA

DISSERTATION

SOFTWARE SYSTEM ARCHITECTURE MODELING
METHODOLOGY FOR NAVAL GUN WEAPON SYSTEMS

by
Joey Rivera

December 2010

Dissertation Supervisor: Mikhail Auguston

Approved for public release; distribution is unlimited

THIS PAGE INTENTIONALLY LEFT BLANK

REPORT DOCUMENTATION PAGE Form APDVOV%igogMB No. 0704-
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the
time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and
completing and reviewing the collection of information. Send comments regarding this burden estimate or any other
aspect of this collection of information, including suggestions for reducing this burden, to Washington headquarters
Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington,
VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188)
Washington DC 20503.

1. AGENCY USE ONLY (Leave | 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
blank) December 2010 Dissertation
4. TITLE AND SUBTITLE: Software System Architecture Modeling 5. FUNDING NUMBERS

Methodology for Naval Gun Weapon Systems
6. AUTHOR(S) Joey Rivera

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING
Naval Postgraduate School ORGANIZATION REPORT
Monterey, CA 93943-5000 NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) | 10. SPONSORING / MONITORING
N/A AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the Department of Defense or the U.S. Government. IRB Protocol number: N/A.

12a. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE
Approved for public release; distribution is unlimited

13. ABSTRACT (maximum 200 words)

This dissertation describes the development of an architectural modeling methodology that supports the
Navy’s requirement to evaluate potential changes to gun weapon systems in order to identify potential
software safety risks. The modeling methodology includes a tool (“Eagle6”) that is based on the
Monterey Phoenix (MP) modeling methodology, and has the capability to create and verify MP models,
execute formal assertions via pre-defined macro commands, and a visualization tool that generates
graphical representations of model scenarios. The Eagle6 toolset has two scenario generation modes,
Exhaustive Search for model verification within scope, and Random trace generation for statistical
estimates of nonfunctional properties, such as performance. The dissertation demonstrates how the
Eagle6 tool may improve the SSSTRP evaluation process by including a methodology to use formal
assertions to test for software states that are considered unsafe.

14. SUBJECT TERMS Open Architecture, Software Requirements, Software Safety, COTS | 15. NUMBER OF
Safety Analysis, Software System Architecture, Modeling, Environmental Modeling, | PAGES
Assertion Checking 195
16. PRICE CODE

17. SECURITY 18. SECURITY 19. SECURITY 20. LIMITATION
CLASSIFICATION OF CLASSIFICATION OF THIS CLASSIFICATION OF OF ABSTRACT
REPORT PAGE ABSTRACT

Unclassified Unclassified Unclassified Uu

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. 239-18

THIS PAGE INTENTIONALLY LEFT BLANK

Approved for public release; distribution is unlimited

SOFTWARE SYSTEM ARCHITECTURE MODELING METHODOLOGY FOR NAVAL
GUN WEAPON SYSTEMS

Joey Rivera
Major, United States Army Reserve
BGS, Indiana University, 1993
M.A., Webster University, 2004

Submitted in partial fulfillment of the
requirements for the degree of

DOCTOR OF PHILOSOPHY IN SOFTWARE ENGINEERING
from the

NAVAL POSTGRADUATE SCHOOL
December 2010

Author:
Joey Rivera

Approved by:
Mikhail Auguston Thomas V. Huynh
Computer Science Systems Engineering
Dissertation Committee Chair Co-Advisor
Ronald Finkbine Robert Harney
Computer Science Systems Engineering

Indiana University Southeast

Peter Musial Clifford Whitcomb
Systems Engineering Systems Engineering

Approved by:

Peter Denning, Chairman, Department of Computer Science

Approved by:

Douglas Moses, Associate Provost for Academic Affairs

THIS PAGE INTENTIONALLY LEFT BLANK

ABSTRACT

This dissertation describes the development of an architectural modeling
methodology that supports the Navy’s requirement to evaluate potential changes
to gun weapon systems in order to identify potential software safety risks. The
modeling methodology includes a tool (Eagle6) that is based on the Monterey
Phoenix (MP) modeling methodology, and has the capability to create and verify
MP models, execute formal assertions via pre-defined macro commands, and a
visualization tool that generates graphical representations of model scenarios.
The Eagle6 toolset has two scenario generation modes, Exhaustive Search for
model verification within scope, and Random trace generation for statistical
estimates of nonfunctional properties, such as performance. The dissertation
demonstrates how the Eagle6 tool may improve the SSSTRP evaluation process
by including a methodology to use formal assertions to test for software states

that are considered unsafe.

THIS PAGE INTENTIONALLY LEFT BLANK

Vi

TABLE OF CONTENTS

INTRODUCTION. ..., 1
A. PROBLEM OVERVIEW ..., 1
B. INTRODUCTION TO THE PROBLEMcuuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiies 2
1. Problem Statement ... 5
2. SSSTRP MiISSION ceeiviiiiiiiiiiiiiiiiieieeeeeeeeeeeeeeeeeeeee et 6
3. Research Approach ... 7
a. Project Planning......ccccoovvieeiiiiieiiicie e 10
b. System Safety Program.........ccccvviiiiiiiiiiiieiiiceeiiiinn, 15
C. RESEARCH FINDINGS: SSSTRP REPORT ANALYSIS.................. 17
D. LIMITATIONS OF STUDY ..cooiiiiiiiiie e, 19
1. Vendor Self-ASSESSMENT.......uuuuuiiiiiiiiiiiiiiiiiiiiiiieees 20
2. Research Results SumMmMaryccccviiiiii e 21
REVIEW OF PREVIOUS WORKcooiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeeeeee 23
A. INTRODUCTION ... 23
B. SOFTWARE SAFETY RISKS WHEN EVALUATING A COTS
SOLUTION ..ttt eeee e e e e eee e e e e eeeeeeeeeeeeneees 23
C. GUN WEAPON SYSTEM SOFTWARE SAFETY RISK:
SOFTWARE OBSOLESCENCEccvviiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeeeees 24
D. VENDOR SELECTION SOFTWARE SAFETY RISKSccooeeee. 26
E. REQUIREMENTS AND COTS CAPABILITY MISMATCHES: A
SOFTWARE SAFETY RISK ..coiiiiiiiiiiiiiiiiiiiieiiiiieeeeeeeeeeeeeeeeeeeeeeeeeeeeee 26
F. SOFTWARE ACQUISITION EVALUATION: PERFORMANCE
AND RELIABILITY oo 27
G. SOFTWARE ARCHITECTURE MODELS AND CONSTRAINTS...... 29
H. SOFTWARE ARCHITECTURE FLEXIBILITY: AN ACQUISITION
RISK 32
l. DEPT OF THE NAVY OPEN ARCHITECTURE ENTERPRISE (OA
ENTERPRISE) PROGRAM......cooiiiiiiie, 34
J. SOFTWARE ACQUISITION CHALLENGES OF A NAVAL GUN
WEAPON SYSTEM....ccoiiiiiii 37
K. SOFTWARE SAFETY REQUIREMENTS FRAMEWORKS............... 39
L. NASA SOFTWARE SAFETY STANDARD (NASA-STD-8719.13).... 44
M. [EC BL1508-3 ...ttt 46
N. SUMMARY .ttt e e e aesesesteeseseessssssnnessesenenenes 49
SYSTEM ARCHITECTURE MODELING METHODOLOGY FOR NAVAL
GUN WEAPON SYSTEM SOFTWAREouuuiiiiiiiiiiiiiiiiiiininiinnennennnnnennnne 51
A. INTRODUCTION ... 51
B. DESCRIPTION OF A NAVAL GUN WEAPON SYSTEM 52
C. IDENTIFICATION OF PROBLEMS FOUND IN THE PRE-
ACQUISITION SOFTWARE SAFETY EVALUATION PROCESS..... 56
1. Domain-Specific Issues Covered in This Research............ 56
2. Domain-specific Issues Not Covered in This Research 56

Vii

D. OVERVIEW OF THE MONTEREY PHOENIX METHODOLOGY 57
1. MP Scenario (EVeNnt TraCe).....ccooveeeiieeeiiiiiiiiiieeeeeeeeiiiie e 57
2. Unordered Events: R: {AB C} .o 59
3. Ordered Events: R: (A B C).oooeeiieeeiiiiiiiee e 59
4, Multiple Unordered Events: R: {* A *} iiiiii i 59
5. Multiple Ordered Events: R: (* A *) oo 60
6. Optional EVents: R: [A] oooiii i e e 61
7. Alternative Events: R: (A | B | C) cooooioiiiii 61
8. Introduction of SHARE ALL Construct and Constraints.... 62
9. MP ATIIDULES oo 63
10. MP Expansion Scope CONStruCt........cccvvvvvvviiiiieeeeeeeeeeiiinnn, 63
11. Example MP MOdel ... 64
12. Small Scope HYpothesSiSccovvuviiiiiiieiiieece e, 68
13. Use Case Representation in MPcooviiiiiiiiini e, 70
14. Use Case MP Model.......ccccooviiiiiii 71
15, Evaluation of MP ... 73
E. PROTOTYPE NAVAL GUN WEAPON SYSTEM MODEL 74
1. The Purpose of the Naval Gun Weapon System Model...... 74
2. Introduction to the Model..........ccccoiis 75
3. Gun Weapon System Model Properties........ccooeevvvveieenennnnn. 75
a. Explanation of Event Attributes..........ccccvvvvvieeenneeen. 93
4. Testing Architectural Design Via Formal Queries 97
a. Testing Architectural Design Via Formal Queries.... 98
b. Macro CommaNdScovveeiiiiiiiiiiie e 98
F. IDENTIFYING POTENTIAL SOFTWARE SAFETY HAZARD
S AN I =2 TP 101
1. Modeling Demonstration: QUERY GWSMaxWatts............ 102
2. Modeling Demonstration: QUERY
Network_Capacity_Checkcccoooviiiiii, 107
3. Model Demonstration: QUERY GCC_OpenFireFail 110
4. Model Demonstration: QUERY Max_Manual_Approvals.. 113
5. Model Demonstration: QUERY GCC_ OpenFireFailed 116
G. USING PROBABILITIES TO REFINE SYSTEM BEHAVIOR IN MP120
H. DEMONSTRATION SUMMARY ..cooiiiiiii, 127
I PROTOTYPE SSSTRP EVALUATION METHODOLOGY 128
J SUMMARY .ttt e e e e e e e eaenreneeeees 133
K LIMITATIONS OF THE PROTOTYPE SSSTRP PROCESS............ 133
EAGLE6-PROTOTYPE SOFTWARE ARCHITECTURE MODELING
Y @]l N AT N 135
A. EAGLE6 PROTOTYPE SOFTWARE ARCHITECTURE 135
B. EAGLEG6 PROTOTYPE SOFTWARE DIAGRAM.............cceeeeeeee. 136
C. MP MODEL OF INTERACTION BETWEEN EAGLE6 AND USER. 138
D. PROTOTYPE COMPILER ARCHITECTUREooeeeiii. 141
1. Eagle6 Compiler Design.......ccccceeiiieeiiiieeiiiiie e, 141
2. Eagle6 Lexer and Parser ..o 142
E. EAGLEG6 PROTOTYPE PARSER AND HELPER...........cceoeiiiiiinnns 142

viii

F. EAGLEG6 PROTOTYPE VIEWER FOR GRAPHICAL AND

TEXTUAL DISPLAY OF SCENARIO.....ciiiiiiiiiianes 143

1. Eagle6 Prototype Viewer General Optionscccccceennnn.. 143

2. Eagle6 Prototype Viewer Scenario Generation Filter 145

G. LIMITATION OF EAGLEG TOOL ...ccooiiiiiiiiiiiii, 148

V. RESEARCH CONCLUSION AND CONTRIBUTIONSccccvvvvvviiieeiiieeeennn. 153

A. FUTURE RESEARCH OPPORTUNITIES.........cooooiiiiieeeeeeeees 154

LIST OF REFERENGCES.......coitiiiiiiiiiiiiiiiiiiieeeeeeetet ettt eeaeeaaesaaeeseseseeeees 157

APPENDIX A — MP MODEL FOR GUN WEAPON SYSTEM MK 34 MOD 1........ 161
APPENDIX B — GUN WEAPON SYSTEM MK 34 MOD 1 ASSERTION

LIBRARY i 169

APPENDIX C — DEFINITION OF TERMScooiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee 171

INITIAL DISTRIBUTION LIST ..o, 173

THIS PAGE INTENTIONALLY LEFT BLANK

Figure 1:
Figure 2:
Figure 3:
Figure 4:

Figure 5:
Figure 6:

Figure 8:
Figure 9:

Figure 10:
Figure 11:
Figure 12:
Figure 13:
Figure 14:
Figure 15:
Figure 16:
Figure 17:
Figure 18:

Figure 19:

Figure 20:
Figure 21:
Figure 22:

Figure 23:
Figure 24:
Figure 25:
Figure 26:
Figure 27:
Figure 28:

Figure 29:
Figure 30:
Figure 31:
Figure 32:
Figure 33:
Figure 34:
Figure 35:

Figure 36:

LIST OF FIGURES

WSESRB Structure (From NAVSEAINST 8020.6D).........ccccoveviiiiinnns 4
Dissertation Research ProCesscccccvvviiiiiii, 8
CBD Flexibility Framework (From Wulf, Pipek, & Won, 2008)............ 33
OA Assessment Model Matrix (From Department of the Navy,

1200 I 35
Software Safety Framework (After Medikonda & Panchumarthy,

200) PP 44
IEC 61508 Life Cycle Framework (From Bell, 2006)ccceeeeee 48
MP EVENE TIACE... oo 58
MP Unordered Events: R: {AB C}...ooovviiiiiiiiiieeeeeeeeeiie e 59
MP Ordered Events: R: (AB C).ovveeveeeeiee e 59
MP Multiple Unordered Events: R: {* A*} ..o, 60
MP Multiple Ordered Events: R: (* A ™), 60
MP Optional EVEntS: Ri[A] ... 61
MP Alternative Events: R: (A | B | C) covvvveeeiie 61
Scenario Generated from MP Schema_Send_Receive_Activity 62
MP Example: GWS_Cycle_Test ReSultS...........cccceeeiiiiiii, 66
Scenario Generated from MP Schema: GWS_Cycle Test #3 67
Scenario Generated from MP Schema: GWS_Cycle_Test Scenario
20 e 68
Jackson's Small Scope Hypothesis (After Jackson, Software
abstractions: logic, language, and analysis, 2006)cccccvvvnnnnn... 69
Gun weapon system Fire Use Case Diagram in UML Notation.......... 70
Example of Use Case Modeling Via MPccoovviiiiiiiiiieieceeen, 73
Scenario Generated from MP Schema: Gun weapon system Model

A B - T 11 PSR 76
Scenario Generated from MP Schema: CD_activity Scenario #7....... 78

Scenario Generated from MP Schema: GCC_activity Scenario #13.. 80
Scenario Generated from MP Schema: GMP_activity Scenario #96.. 82
Scenario Generated from MP Schema: CDC_activity Scenario #85 .. 84
Scenario Generated from MP Schema: EOD_activity Scenario #13 .. 86
Scenario Generated from MP Schema: GMCP_activity Scenario

Scenario Generated from MP Schema: GM_activity Scenario #29.... 90
Scenario Generated from MP Schema: R3D_activity Scenario #53... 92

MP Model Scenario Generation ProCess............ccevuvvieiiieeeeeevevnninnnnnn. 98
Query BUilding PrOCESSoovviiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeee e 98
QUERY GWSMaxWatts - Scenario QUENYccceeveeeeeeeeeeiiiiiieeeenn, 103
QUERY GWSMaxWatts - RESUILSccccevvviiiiiiiiiiieeeeeeeeviiice e 103
Scenario Generated from QUERY GWSMaxWatts - Graphical

DISPIAY .o 105
Scenario Generated from QUERY GWSMaxWatts - Zoom Slice

VW . et 106

Figure 37:
Figure 38:
Figure 39:

Figure 40:
Figure 41:
Figure 42:

Figure 43:
Figure 44:
Figure 45:

Figure 46:
Figure 47:
Figure 48:
Figure 49:
Figure 50:
Figure 51:
Figure 52:
Figure 53:
Figure 54:
Figure 55:
Figure 56:
Figure 57:
Figure 58:
Figure 59:
Figure 60:
Figure 61:
Figure 62:
Figure 63:
Figure 64:

QUERY Network_Capacity Check - Scenario Query....................... 108
QUERY Network_Capacity Check - Resultsccccevvvvieennnennn. 108
Scenario Generated from QUERY Network_Capacity Check -
Graphical DISPlayeiiiiieiiiieecce e 109
QUERY GCC_OpenFireFail - Scenario QUeryccccevevvvvvvnnnneeennn. 111
QUERY GCC_OpenFireFail - ReSUltS...........ccuvieiiiieeiiieeiciee e, 111
Scenario Generated from QUERY GCC_OpenFireFail - Graphical
DISPIAY ... e a e e e 112
QUERY Max_Manual_Approvals - Scenario QUeryccccceeeeeennn. 113
QUERY Max_Manual_Approvals - ReSUltSccceeeevviviiiiiiiiiiieeee, 114
Scenario Generated from QUERY Max_Manual_Approvals -

Graphical DISPlayuoiiiiieiiiieeiee e 115
GCC_ OpenFire Total Processing Time - Scenario Query............... 117
GCC_OpenkFire Total Processing - ReSUltS.........c.ccccevvvvviiiiiiceneeeenn, 118
GCC_OpenFire Total Processing - Graphical Display...................... 119
Exhaustive Scenario Generation OptioNS...........ccovvvvvvviiiiiieeeeeeeeeen, 122
Radar_Target_ldentified Filter..........ccoovvviiiiiiiiiecee e 123
Model Results Showing Probabilitycccoooeiiiiiiiiiiiiieeee, 124
Model Results Showing Probability ..., 124
Random Scenario Generation OptioNS..........ccoeeevvvviviiiiiiiiiieeeeeeeeenns 126
Model Results Showing Probability for 1000 Generated Scenarios . 127
Proposed SSSTRP Evaluation Methodology...........cccccceeeiviieeeieennnn, 132
Eagle6 Prototype Software ArchiteCture............cccvvevvvviiiiiiieeeieeeeens 136
Eagle6 User Experience Modeloooovviiiiiiiiiiiiiiiiiie e, 137
Eagle6 MP Architecture SCenario..........cccceeeeeeeeeeeeeeeeeeeeeeeeee, 140
Prototype MP EdItOroooviiiiiii i 142
Eagle6 Prototype Parser Error Handlingcccovviiiiiiiiiiiiinennn, 143
Eagle6 Prototype Viewer Scenario Generator............cccceeeveeeeeeeeennns 144
Eagle6 Prototype Viewer Scenario Generator Filter......................... 145
Eagle6 Prototype View Scenario Generator Result.......................... 147
Eagle6 Prototype Viewer Filter Functionalitycccccoeeiiiiiiiininnn. 148

Xii

Table 1:
Table 2:
Table 3:
Table 4:
Table 5:

Table 6:

LIST OF TABLES

Ungrouped SSSTRP Failure ReSUltS...........oooooeiiiii, 18
Grouped Error Reports in SSSTRP Failure Reports..........ccccceeeeeennnnn. 18
OAAM Development Levels (From Department of the Navy, 2005) ... 36
Known Software Safety Standards (Bhansali, 2005)..............cccceuueee. 40
Required Elements for a Generic Software Safety Requirements

Framework (From Bhansali, 2005)cccoovviieiiiiiiiiiiiie e 42
Gun Weapon System Model Events and Attributes............cccccceeeeenen. 95

Xiii

THIS PAGE INTENTIONALLY LEFT BLANK

Xiv

LIST OF ACRONYMS AND ABBREVIATIONS

ACAT

CA

CE/D
CINCLANTFLT
CINCPACFLT
CMC

CNO
COMNAVAIRSYSCOM
COMNAVORDCEN
COMMARCORSYSCOM
COMOPTEVFOR
ConOps

DDA

DON

DRPM

ECP

ESD

EMD

EOD

FOC

FHA

FMECA

FTA
GWS
HAR
HERO

I0C

Acquisition Category

Code Analysis

Concept Exploration and Definition
Commander in Chief Atlantic Fleet
Commander in Chief Pacific Fleet
Commandant Marine Corps

Chief of Naval Operations

Commander, Naval Air Systems Command
Commander, Naval Ordnance Center
Commander, Marine Corps Systems Command
Commander, Operational Test Evaluation Force
Concept of Operations

Detailed Design Analysis

Department of the Navy

Direct Reporting Program Manager
Engineering Change Proposal

Electrostatic Discharge

Engineering and Manufacturing Development
Explosive Ordnance Disposal

Full Operational Capability

Functional Hazard Analysis

Failure Modes, Effects and Criticality
Analysis

Fault Tree Analysis

Gun Weapon System

Hazard Action Report

Hazards of Electromagnetic Radiation to
Ordnance

Initial Operational Capability

XV

IPS

LRIP
MARFORLANT
MARFORPAC
MDA

MP

MPS
NAVSURFWARCENDIV
NDI

OPEVAL
ORDALTS
O&SHA

PDA

PEO

PHA

PHL

PHST

PIP

PM

POP

SAR

SHA & SSHA
SHIPALTS
SOF

SRA
SSSTRP

SSWG
STRA
TECHEVAL

Integrated Program Summary

Low Rate Initial Production

Marine Forces Atlantic

Marine Forces Pacific

Milestones Decision Authority

Monterey Phoenix

Maritime Prepositioning Ship

Naval Surface Warfare Center Division
Non-Development Item

Operational Evaluation

Ordnance Alterations

Operating and Support Hazard Analysis
Preliminary Design Analysis

Program Executive Officer

Preliminary Hazard Analysis
Preliminary Hazard List

Packaging, Handling, Storage and
Transportation

Product Improvement Program
Program Manager

Performance Oriented Packaging
Safety Assessment Report

System and Sub-System Hazard Analyses
Ship Alterations

Special Operations Forces

Software Requirements Analysis
Software System Safety Technical Review
Panel

System Safety Working Group
Software Test Results Analysis

Technical Evaluation

XVi

TDP

TEMP

TRP
USSOCOM
VERTREP
WSESRB

Technical Data Package

Test and Evaluation Master Plan

Technical Review Panel

United States Special Operations Command
Vertical Replenishment

Weapon System Explosives Safety Review
Board

XVii

EXECUTIVE SUMMARY

The U.S. Navy uses the Weapons System Explosive Safety Review Board
(WSESRB pronounced “we-serb”) to evaluate potential changes to weaponry
systems on naval ships. The WSESRB has a Software System Safety Review
Panel (SSSTRP—pronounced “sis-trip”) subcommittee that focuses on the
software safety aspects of weapon system changes. The SSSTRP process
evaluates potential software systems during the pre-acquisition process, and
reports the findings to the WSESRB. The SSSTRP community is experiencing a
high vendor failure rate that results in delays to the acquisition process, and
delays to equipment upgrades that lead to an improved war fighting capability.
This dissertation is the result of researching three years of SSSTRP reports, and
determining the causes of vendors failing the SSSTRP process. It also includes
recommendations for improved SSSTRP processes, and tools that accompany

the process improvements.

The SSSTRP process improvements within this dissertation center around
a modeling and simulation tool named “Eagle6.” Eagle6 is a web-based
application that provides the SSSTRP community the ability to test the effects of
potential weapon system architectural changes on the existing legacy system.
Eagle6 uses formal methods to create macro queries that enable the
nontechnical user to test both functional and nonfunctional system and software
requirements, while generating reports that are understandable by both technical
and nontechnical SSSTRP members. The tool is publically available on the web

at www.Eagle6.com, and includes tutorials and sample models.

Xviii

ACKNOWLEDGMENTS

There are many people who have contributed to this research effort, both
directly and indirectly. First and foremost, | would like to thank my wife, Beth, for
being so supportive during this endeavor. | also thank my advisor, Dr. Auguston,
for his commitment to "teach” during my research, for his sound professional and
personal advice, and for being such an advocate for my research during my
tenure at NPS. You are, without a doubt, the best teacher | have ever known.
Thanks to Dr. Huynh for his structure, guidance, and patience over the last year.
Thanks to Alex and Michael Gociu for their help on the Eagle6 application
programming. Thanks to Paul Dailey for his encouragement and assistance in
studying for exams. Finally, thanks to all my friends and family who encouraged

me when | needed it most.

XiX

THIS PAGE INTENTIONALLY LEFT BLANK

XX

l. INTRODUCTION

The objective of the research was to identify the problems associated with
the high number of software safety failures associated with the Navy’s software
system acquisition process. Software Safety is defined as “The software has
unintended (and unsafe) behavior beyond what is specified in the requirements”
(Leveson, 1995). This dissertation includes research on three years of
unclassified software system safety evaluation reports and an analysis of the
findings (Chapter Il). A prototype modeling methodology, and the ability to apply
the modeling methodology to the software safety domain, is demonstrated in
Chapter Ill. The contributions of this research are as follows:

e A prototype methodology and tools to support software system
safety analysis for the Navy'’s software system acquisition process

e Higher fidelity of software system safety evaluation using tools that

support assertion checking

e Two methods for architecture testing using exhaustive search for
model verification, and random scenario generation for statistical

estimates of nonfunctional requirements, such as performance

e Extension of Monterey Phoenix Modeling Methodology to include a
framework that uses predefines macro queries to execute

aggregate operations over events

A PROBLEM OVERVIEW

Chapter | contains information describing the Navy’'s Weapon System
Explosive Safety Review Board certification process for Software Systems.
Specifically, this chapter describes the SSSTRP evaluation process, and the
impact to naval operations of the vendor failing the SSSTRP evaluation process.
The purpose of this chapter is to describe the process and results related to
determining the causal factors for vendors failing the SSSTRP evaluation

process. The results of this research demonstrate that the SSSTRP evaluation

process lacks sufficient software safety evaluation methodology and tools.

B. INTRODUCTION TO THE PROBLEM

The United States Navy formed the Weapon System Explosives Safety
Review Board (WSESRB) in 1968 as a result of a fire on the USS Forrestal (CV-
59) (U.S. Navy, 2007). The subsequent investigation recommended the
establishment of an independent review process (Naval Sea Systems Command,
1997). The report highlighted the need to ensure that safety requirements for

explosives were met for all munitions introduced to the Fleet.

The WSESRB's responsibility is to review the overall safety aspects of
each weapon system, explosive system, and related system to ensure that
weapon system safety requirements are in compliance. After assessing the
degree of compliance with existing criteria, the WSESRB provides a
recommendation to the program manager, program sponsor, Chief of Naval
Operations (CNO), and the Milestone Decision Authority (MDA) on the adequacy
of the safety program and on whether the proposed weapon system should
advance to the next stage in the acquisition cycle. At the discretion of the
WSESRB Chairperson, special WSESRB Technical Review Panels (TRPs) may
review specific safety aspects requiring special expertise (e.g., ordnance-related
software safety) in weapon systems. An appointed TRP Chairperson leads the
TRP team that has at least two other members. Naval Systems Commanders,
upon request from the WSESRB Chairperson, may identify a member to serve
on TRPs. These members are subject-matter experts and have expertise in the
applicable area of the TRP. Other members and technical advisors, chosen for

their expertise, are appointed at the discretion of the TRP Chairperson.

Recommendations made by TRPs are presented to the Program Office
and the WSESRB at the conclusion of the TRP meeting; however, the TRP
recommendations do not become official until the WSERSRB reviews and

endorses the results. The WSESRB may accept, modify, or reject the

recommendations of the TRP. The results of the WSESRB action on the TRP

recommendations are provided to the Program Office.

Dahlgren Division, Naval Surface Warfare Center
(NAVSURFWARCENDIV Dahlgren), Dahlgren, Virginia, acts as a principal
activity for system safety support to the WSESRB, as well as chairing the
ordnance-related Software Systems Safety Technical Review Panel (SSSTRP)
and other TRPs as assigned. The evaluation process contains: (1) developing
and recommending, with WSESRB approval, TRP review criteria, and project
data; (2) coordinating meetings of the SSSTRP with members and program
offices; (3) assisting the program office in tailoring TRP review criteria for the
type of program and the current program phase; (4) identifying qualified technical
advisors to participate in the TRP, and, with the WSESRB chairperson’s
concurrence, arranging for their participation; (5) scheduling meetings of the TRP
at the request of the WSESRB chairperson; and (6) providing a summary report
of the TRP findings and recommendations of the SSSTRP TRP to the full
WSESRB.

Software Safety Certification Process

Tﬂ'p'Lﬂ'H"&l Process
Syztemn
Ewgm'm
Sg'll.l‘m Sﬂh ‘i'll'll‘l‘l
oy Anaalyls
BN s == TN
Fafaty I Hazard
Flanning Analysis COTS Hazard Analysis
‘ Interoporab@ty
it Hazard
Analysis
L Software
i ifcati Sustained
Testing & Certification + Fluet Roloasn
Valldation i {:— Englinesring

Tool & Fleat Changes in Technology
Enwirenmant Anemaly Op-arational Insartion |

Qualification Reporting Enwvirenment Refresh

Figure 1: WSESRB Structure (From NAVSEAINST 8020.6D)

Figure 1 represents the WSESRB certification process (Naval Sea
Systems Command, 1997). The WSESRB’s responsibility is to review safety
aspects of each weapon system in order to ensure the Navy's safety
requirements are met. The software engineering processes are not directly
addressed within this certification process; instead, software engineering
processes are handled through the SSSTRP, a subcommittee that addresses
software development processes and outputs in order to ensure software safety.
The software vendor responds to the SSSTRP’s Request for Proposal (RFP) with
a predefined Technical Data Package (TDP). The TDP requirements structure
lacks a standardized method of evaluation (Rivera & Lugqi, 2010).

1. Problem Statement

A gunship system has both hardware and software components.
Unacceptable unintended behavior of the software system may result from
defective architectural changes made to the hardware and/or software
components of the gunship system. The defective architectural changes can
result from an incorrect implementation of well-designed software system
architectural plans and/or the correct implementation of a software system
architectural design that does not meet the gun weapon system requirements.
The Navy's Software System Safety Technical Review Panel (SSSTRP), a
committee of domain experts, is responsible for evaluating the gun weapon
system architectural designs, but its evaluation methodology does not contain
adequate structure for evaluating potential gunship architectural changes and/or
the software tools necessary to test the proposed gun weapon system
architectural changes. Consequently, the SSTRP committee would unwittingly
approve of defective software system architectural changes that can result in
unacceptable unintended software behavior, which, in turn, can lead to potential
software safety risks. These potential software safety issues, if unidentified
during the SSSTRP evaluation process, can eventually derail the gunship system
acquisition. To identify potential software safety issues that may bring such
demise to the gunship system acquisition, it is necessary to achieve these two
goals: (1) Identify areas within the SSSTRP evaluation process that need
improved and (2) predict the unintended behavior of the gunship software. A
research effort is thus needed to enable attainment of the two goals. It consists
of an investigation of the SSSTRP evaluation process and the development of a
software tool that has the ability to model potential gunship software system
architectural change. The investigation of the process will result in
recommendations for improving the SSSTRP evaluation process. The software
tool will aid the SSSTRP personnel in the evaluation of potential software system
changes.

1. SSSTRP Mission

The SSSTRP's primary focus is to investigate the vendor's software
engineering processes, and to identify any risks associated with the
implementation of the product. Vendors submit Technical Data Packages
(TDPs) that contain supporting documentation from the vendor's software
engineering quality assurance program. The vendor's responsibility during the
SSSTRP presentation is to explain the known risks of its product, and the risk
mitigation strategies for each known risk.

The design of the SSSTRP review process entails assignments of both
functional and subject matter experts (FME/SME) as members of a technical
review board. The TDP is comprised of software development life cycle
documentation that was generated during the vendor's product development

process.

Our research shows that the current SSSTRP process has a failure rate of
over 80% (Rivera & Luqi, 2010), resulting in (1) the government program office
placing the project on hold until the vendor responds to the failures; or (2) the
government acquisition community having to find an alternative vendor solution

that has the functional and technical capability to pass the SSSTRP process.

A vendor’s failure in the SSSTRP process may impact both the end-user

and the acquisition community in the following ways:

e Project timelines are at risk, thereby resulting in higher failure rates

for related project milestones.

e The end-user ability to Ileverage the new product

functionality/capability is delayed.

e The end-user may be forced to use a product that has lesser
functionality overlap, or multiple products to meet the total

functional requirement.

e Acquisition processing costs may be higher, with lower customer

satisfaction.

The unacceptable risks associated with the high level of SSSTRP failures
are due to a SSSTRP evaluation process that has no clear definition of software
analysis, and no identification of a standardized evaluation process. The
purpose of this research is to explore the problems of the naval gun weapon
system SSSTRP evaluation process, and propose a methodology for identifying
software safety risks. Specifically, our research investigates how to reduce the
impact of the vendor failing the SSSTRP process, and how to standardize the
software safety quality assurance requirements using a formal method of
evaluating potential software.

2. Research Approach

The primary goal of this research project is to identify SSSTRP evaluation
process improvements, and provide a methodology and tools that support a
software safety assessment with higher fidelity. Figure 2 represents the

approach used for this research:

Research Process

Research Process

Problem: SSSTRP has an
unacceptable high number of failures
resulting in delays within the acquisition
process.

Results/Artifacts

A 4

Analyze SSSTRP Evaluation

Methodology

A 4

v

Review history of SSSTRP findings
determine if failures are related to a
specific software engineering domain.

A\ 4

A 4

Review previous work to determine
applicable solutions for the problem

A 4

Chapter 1: Introduction to the Problem
Artifacts: Analysis of SSSTRP failures

Problem Statement: “In order to
alleviate unintended software behavior
of navy gun weapon systems that may
result in software safety issues, we
need a tool that has the capability to
model the interaction between the
system and its environment.”

A 4

A 4

Define requirements and constraints for
a proposed solution. The solution
should include a combination of tools
and methodology.

Chapter 2: Review of previous work

\ 4

Architect/Design/Develop
solution

prototype

Chapter 3: System Architecture
Modeling Methodology for Naval Gun
Weapons System Software.

Prototype revised SSSTRP process
that incorporates the new methodology
and tools into the SSSTRP evaluation
process.

A 4

Test prototype solution with a SSSTRP
case study

A 4

Chapter 4 — Modeling Tool Description

y

Report the results of the case study.

A 4

Chapter 3 — Demonstration of
Assertion Checking and Use Case
modeling using modeling tool.

A 4

Dissertation Draft & Defense

Figure 2:

Dissertation Research Process

The research plan includes the following areas of focus:

e Analyze SSSTRP Reports — The purpose of the analysis phase is
to identify the primary reasons for SSSTRP failures within a data
set that contains 2007-2009 unclassified U.S. Navy SSSTRP

reports.

e SSSTRP Structure — The research plan includes a requirement to
analyze SSSTRP personnel structure, and the impact of the

SSSTRP personnel structure relative to vendor failure rates.

e Identify Modeling Methodologies — Recommendations for
improvements to the SSSTRP process may require an integration
of a modeling methodology that supports a streamlined acquisition
process, and ensures a high-level of fidelity relative to software

safety evaluation techniques.

The research goals are used as a means of determining the course of the
research. The goals have also been established based on the literature review,

which identifies potential gaps in the current Navy software acquisition process.

The research for this dissertation required us to submit a request to the
U.S. Navy to view the previous three years of naval gun weapon system
SSSTRP findings (2007-2009). The Navy Program Office PEO IWS 3C, Naval
Gunnery Project Office approved our request to release SSSTRP results that
were not classified as sensitive, and provided a subset of three years of SSSTRP
findings. The SSSTRP findings contain opinions, reports, and recommendations
to the WSESRB. Issues identified in the SSSTRP are documented in the final
report (Rivera & Lugi, Requirements Framework for the Software System Safety
Technical Review Panel Technical Review Package, 2010).

The SSSTRP reports were analyzed in order to determine potential
commonalities for vendor failures. The SSSTRP failures were categorized using
SSSTRP failure category definitions that were obtained from the WESESRB
directive NAVSEAINST 8020.6D (Naval Sea Systems Command, 1997):

a.

Project Planning

The Software Development Project Plan defines the dates,

milestones, and deliverables that drive the project’'s milestone and timeline

definitions. The following documents are software engineering project

management deliverables that fall within the “Project Planning” category:

Project Charter — The Project Charter describes the agreement

between the organization providing the product or service, and the client

organization requesting and receiving the project deliverable. It is a tool to obtain

commitment from all affected groups and individuals within a specific project. It is

an agreement between the technical and business groups which define:

Partners and external stakeholders
The project management framework

Roles, responsibilities, accountabilities, and activities of the

team members
Management commitments

The authorized project accountability framework

Project Management Plan (PMP) — The PMP is the controlling

document to manage an Information Management/Information Technology

(IM/IT) project. Upon approval, the PMP provides a baseline to monitor progress

and measure results. The PMP contains the following structure:

Purpose, scope, and interim and final deliverables of the

project
Schedule and budget for the project
Project assumptions and constraints

Managerial and technical processes necessary to develop

the project deliverables

10

e Resource requirements
e Additional project plan requirements

Scope Statement — The Scope Statement is a summary-level
description of a project that includes project justification, project purpose and
scope, and high-level work plan and deliverables, in addition to product/service
description.

Quality Management Plan(QMP) — The QMP describes the
requirement to ensure the products/deliverables are correct (i.e., function
correctly, satisfy specifications) and to ensure that the project's project
management and development processes are applied properly so as to ensure

the quality of the products.

The Quality Management Plan identifies the standards, practices,
and methods to be used in the project for performing quality assurance activities.
It also explains the verification process for deliverables, the tracking and
reporting of items that do not conform to the QMP, the process to approve
deliverables, and the process for Technical Reviews and Verification and
Validation Audits.

Test Plan — The Test Plan is used to organize, schedule, and
manage the testing effort. The test plan defines the types of testing (e.g.
functional, performance, usability) and the test levels (e.g., unit, integration, field

testing) within the planning and implementation phases of the project.

The Test Plan identifies test items, testing tasks and
responsibilities, the testing environment, testing resource requirements, and the
schedule of the testing activities. It also lists the individual tests, and the

objective, procedures, and expected results of each test.

Risk Management Plan — The Risk Management Plan describes
the management of project risk, and is a subset or companion element of the
Project Management Plan. It identifies the involvement of the project team, the

supplier, and the client in executing risk management activities, the detail and

11

scheduling of each major risk management activity (e.g., identification, analysis,

prioritization, monitoring), risks threshold criteria, and reporting formats.

Performance Plan — The Performance Plan specifies the project
parameters (e.g., cost, schedule, risks) and the product/service attributes (size,
complexity, sites) that will be used to analyze and report the current status of the
project, and to forecast future progress and status. It is a subset or companion

piece to the Project Management Plan.

The Performance Plan outlines what raw data will be collected, the
performance requirements analysis plan, the performance testing tools, and

types and frequency of performance reports.

HR (Staffing and Training) Management Plan — The HR
Management Plan defines the rotation schedule for project resources, and the
evaluation of performance. In addition, it identifies the training requirements to

ensure the project team posses the requisite knowledge and skill set.

Configuration Management Plan (CMP) — The CMP describes
the set of activities and tools to ensure that the project has adequate control over
all items necessary for creating or supporting the project deliverables. The CMP
defines the project deliverables in which it has control, and the mechanism for
controlling changes to those items. It also describes how baselines are produced,
the configuration reporting requirements, and the audits or reviews of the

configuration management process.

Procurement Management Plan — The Procurement Management
Plan documents the management process of identifying how project needs may

best be met by procuring products and/or services, such as:
e Hardware (e.g., development and/or installation hardware)

e Software (e.g., COTS, outsourcing some or all of the
development)

e Services (e.q., management or development

contractors/consultants)

12

The Procurement Management Plan identifies procurement
strategies, outlines the scope of products and/or services to be procured, and
identifies responsibilities for the procurement process up to and including

contract closeout.

Requirements Management Plan (RMP) — The RMP describes
the management of the project’s requirements for products and services during
the project life cycle. It describes the steps to develop an understanding of the
provider's requirements with specific focus on requirements definition and
measurements. The RMP also identifies and controls changes to requirements

as they evolve during the project to ensure traceability.

Software Development Plan (SDP) — The SDP details the
activities and deliverables during the Software Development Life Cycle of a
project. The SDP defines the software development methodology, the design,
programming and documentation standards, the establishment, control, and
maintenance of the development environment, and any other applicable software

development activities.

Information Management Plan — The Information Management
Plan details the communication and integration activities required to successfully
incorporate the new functionality in the enterprise, to include ensuring the new

product is in accordance with existing legislation, regulations, and policies.

The Information Management Plan describes the identification of
client information needs, and the information standards. In addition, the
Information Management Plan describes how access to information, privacy,
confidentiality, security, intellectual property provisions, retention requirements,
and other life cycle management of information considerations are taken into

account within the project life cycle.

Requirements Specification — The Requirements Specification
defines the boundaries for the project and explicitly specifies system/product
requirements and features. The Requirements Specification stipulates functional,
performance, information, capability, safety, security, ergonomics, operations,

13

maintenance, interface, qualification requirements, and the definition of
acceptance criteria. The Requirements Specifications provides a documented
reference of the project team's understanding of the product/system

requirements, and the deliverables required to provide the product/system.

Risk Log - The Risk log is a listing by ranking of the project risks
and related risk information. The Risk Log provides a statement of each risk, its
ranking, the probability of occurrence and impact if the risk occurs, the planned
response, the person responsible for mitigation actions, and the current status

and actions.

Change Requests - Changes occur during the project life cycle
due to the addition or change to the requirements of the project's products or
services, to an increase or decrease in the complexity of project activities, to an
under or over cost or time estimate, or due to changes in the project assumptions
or dependencies. A Change Request identifies the need to expand or contract
the project scope, modify costs or adjust schedule estimates. It describes in a
concise manner the reason, scope, and impact of a change, and records the
approval to proceed with the change.

Closure Plan - A Closure Plan summarizes the results of a project
and the activities required for the transition of the project's products and services
from "development" to "production” state. The Closure Report identifies the
extent to which the project objectives were satisfied and the anticipated benefits
realized, the person or group within the client's organization who will oversee the
transition to the "production” state, the lessons learned during the project, the list
of project files, and the support arrangements and warranty period, rules and

conditions.

Project Acceptance Plan — The Project Acceptance Plan
formalizes client acceptance of all the deliverables of a project (or a phase) and

also confirms that there are no outstanding deliverables.

Deployment and Maintenance Plan — The Deployment and

Maintenance Plan is a high-level design of the approach to system maintenance.

14

This concept sets the overall parameters for change management during the
maintenance phase. Version control, upgrade planning, and legacy support are

parts of the Deployment and Maintenance Plan.

b. System Safety Program

The System Safety Program optimizes system safety in the design,
development, use, and maintenance of software systems and their integration

with safety critical hardware systems in an operational environment.

Software Safety Program - The Software Safety Program
identifies all potential risks associated with a software installation, usage,
interface requirements, hardware/software sharing, software maintenance, and
system retirement. The Software Safety Program identifies critical risk scenarios
that affect the software’s ability to function not as designed, or to mitigate

functional design risks.

Safety Risk Management - Safety Risk Management is an
iterative process that begins with an initial safety assessment of all known
hazards. Known hazard states are stored in a Hazard Tracking System (HTS) in
order to document the mitigation associated with each hazard. Safety precepts
are incorporated during system development to reduce the likelihood of the
hazards from occurring. Safety Risk Management concludes when the residual

risks have been reduced to a level acceptable to the appropriate authority.

Safety Verification/Audits - Safety Verification and Audit efforts
are performed to ensure safety data is being collected and objectives and
requirements of the safety program are being met. Test plans, test procedures,
and results of all tests including design verification, operational evaluation,
technical data validation and verification are reviewed to ensure the safety of the
design is adequately demonstrated and that the results of the safety evaluations
are included in the appropriate test and evaluation reports. Audits are scheduled
at major program milestones so as to provide management with an indicator of

safety program progress.

15

Hazard Tracking Management — The purpose of Hazard Tracking
Management is to identify safety critical issues, evaluate hazards, and
document/manage the mitigation efforts required to minimize the impact of the
hazard. Tracking systems are part of the risk mitigation strategy and are an
ongoing effort to stabilize the safety of control-based software.

Based on the software test data, (including mishap data from
similar systems and other lessons learned), hazards associated with the
proposed design or function are evaluated for hazard severity, hazard probability,
and operational constraints. As a minimum, the Preliminary Hazard Analysis

considers the following for identification and evaluation of hazards:

e Hazardous components (e.g., fuels, lasers, toxic substances,

munitions).

e Safety design criteria to control safety-critical software
commands and responses (e.g., inadvertent command,
failure to command, untimely command or responses) must
be identified and appropriate action taken to incorporate

them into the software specifications.

e Environmental constraints including the operating
environments (e.g., temperatures, fire, lightning, and

radiation).

e Safety related equipment, safeguards, and possible alternate

approaches.

e |dentification of the safety requirements, standards and other
regulations pertaining to personnel safety, environmental
hazards, and toxic substances with which the system will

have to comply.

COTS/GOTS/NDI Assessment - In an Open Architecture
environment, the COTS/GOTS/NDI assessment is centered on the exposure
related to COTS/GOTS/NDI software that shares the same architectural support.

16

The interfaces between the COTS/GOTS/NDI software and the Open
Architecture environment are thoroughly analyzed to ensure there are no
impeding conflicts. The ongoing management and/or maintenance of
COTS/GOTS/NDI software is also monitored to ensure version control is well-
documented and analyzed in order to ensure the vendor has not made changes

that may impact the safety assessments.

Simulation/Stimulation/Emulation - Simulation-Stimulation-
Emulation test documentation is evaluated to ensure proper stress, boundary,
and environmental testing meets the minimum software system safety

requirements for Open Architecture integration.

C. RESEARCH FINDINGS: SSSTRP REPORT ANALYSIS

The process of reviewing three years of SSSTRP reports was designed to
identify potential gaps in the current software acquisition SSSTRP evaluation
process, and to identify trends in TRP vendor failures. A failure is defined as any
SSSTRP report that resulted in the software acquisition process being
temporarily or permanently halted as a result of the SSSTRP review. This
section covers the methods used to gather, classify, and report the SSSTRP

failures.

A total of 86 SSSTRP reports were identified within the 2007, 2008, and
2009 fiscal years. Table 1 provides a summary of the resulting issues within
these reports. It should be noted that although the total number of issue reports
was 86, there are 177 total issues reported within these issue reports; this is due
to multiple SSSTRP reports containing multiple failures within multiple
categories. With a mean of 2.06 failures per SSSTRP failure report, the
maximum number of failures found was four and the lowest number of failures
being one. SSSTRP failure reports are not issued in cases where there is no

failure found.

17

Percentage of
Percentage of SSSTRP
Category # Issues all Failures Reports
Software Safety Program 34 19.2 39.5
System Safety Program 27 15.3 31.5
Safety Verification/Audits 24 13.6 27.9
Product Integration and Test 19 10.7 22.1
Project Planning 18 10.2 21.0
Safety Risk Management 12 6.8 14.0
Validation & Verification 9 5.1 10.5
Risk Management 9 5.1 10.5
Configuration Management 6 3.4 7.0
COTS/GOTS/NDI 6 3.4 7.0
Hazard
Tracking Management 5 2.3 5.8
Sim-Stim-Emulation 4 2.3 4.7
Requirements Management 2 1.1 2.3
Deployment & Maintenance 2 1.1 2.3

Table 1: Ungrouped SSSTRP Failure Results

The figures in Tablel indicate ungrouped failures for all potential failure
modes identified within the 86 cases that were analyzed. The results show that
the majority of SSSTRP failures were found within the more complex areas of
project management and system and software safety management. Table 2
indicates the number of failures found within these areas (as well as those that
belong to other stages, such as maintenance/implementation).

Percentage of
Stage (grouped Categories) # Issues all Failures

Software and System Safety and Risk

Management 111 62.7
Project Management (Implementation) 58 32.8

Life Cycle (Post implementation) 8 4.5
Total 177

Table 2: Grouped Error Reports in SSSTRP Failure Reports

18

Table 2 shows that approximately 63% of all reports occurred within the
system and software safety and risk management areas, which include Software
Safety Program, System Safety Program, Safety Verification/Audits, Safety Risk
Management, Risk Management, and Hazard Tracking Management. The
second most common area of problems reported was in the Project
Management/Implementation category, which included errors in the Product
Integration and Test, Project Planning, Validation and Verification,
COTS/GOTS/NDI, Simulation-Stimulation-Emulation, and Requirements
Management phases of the vendor implementation plans. Approximately 5% of
final failures occurred post-implementation in the project life cycle; these failures
fell within the Configuration Management, and Deployment and Maintenance

phases.

The conclusive evidence within the research shows the majority of
weaknesses within the SSSTRP process for Navy software acquisition occurs
within the system and software safety areas. These findings are also consistent
with previous research in the area, which found that safe software acquisition
was increasingly complex and was a consistently problematic area in Naval

acquisition processes (Rivera & Lugi, 2010).

D. LIMITATIONS OF STUDY

The SSSTRP reports that were made available by the U.S. Navy included
only declassified results. The representative nature of these reports was
impossible to determine with certainty because we did not have access to the full
set of the data, which included classified SSSTRP reports. However, because
the structure of the SSSTRP evaluation process is not affected by the
classification level of the data, there is no reason to believe that the unclassified

data used for this research is not representative of the domain.

As the reports were provided over a period of three years, it was expected
that there would be variations in format and textual content. However, the
structure of the reports varied and the reports did not display a consistent

methodology for reporting SSSTRP findings. Although the reports did have

19

general headings that could be used for guidance, the data contained in the
reports was opinionated justification for recommendations, and did not follow a
standardized evaluation and reporting format. Over the three years of report
data, there were few instructions for how a SSSTRP member should report a

finding, and what information was required for a failure report.

This lack of evaluation and reporting structure resulted in SSSTRP
evaluation reports that were largely the result of human inspection, which led to a
SSSTRP member's personal opinions about a potential failure. Thus, the
inconsistency and weakness in internal structure of these reports made them
impossible to categorize/analyze beyond the classifications found in this
dissertation. Additionally, a large number of issues resulting in a SSSTRP failure
were present in one or more milestone phases. Since the evaluation milestones
are sequential, this was highly problematic because issues that were found in
earlier stages were problematic for future milestone requirements. "Repeating
Incidents" was widespread and persistent, and was identified across multiple

project milestones.

Related to the SSSTRP evaluation process is a human resources issue
that was identified during the examination of the reports. Our research found a
very high turnover on the SSSTRP committee, with few long-term members.
Additionally, the SSSTRP committee did not always consist of software or
process experts, but included members from other areas of expertise. The
committee members, in addition to rotating frequently, also did not have
standardized evaluation documents available in order to ease the process of
failure determination; instead, each failure was identified, analyzed, and

processed individually.

1. Vendor Self-Assessment

The SSSTRP reports did not demonstrate any evidence of self- of the
software systems submitted by vendors. The research showed a lack of readily
available standards for this self-assessment, preventing software vendors from

routinely determining whether their products would meet the demands of the

20

SSSTRP. Requirements documents were available that identified the functional
requirements of the software; however, these documents did not identify the
safety requirements and risk assessment processes used for the software.
Additionally, as the SSSTRP committee does not have a guideline for the
analysis of the safety requirements or other requirements of the submissions, it is
difficult for vendors to determine what will (or will not) pass the screening
process. Because of this ambiguous evaluation process, it is exceptionally
difficult for a vendor to determine potential areas of TRP improvement that could
increase the vendor’'s chances of passing the SSSTRP evaluation process. By
extending the TRP to include a vendor self-assessment, it would be possible to
improve the overall outcomes of the process and increase the chances for the

products to pass the SSSTRP assessment.

2. Research Results Summary

The analysis of the SSSTRP reports resulted in the following summary:

e The SSSTRP is unable to sufficiently test potential naval gun

weapon system software solutions during the acquisition process.

e The Vendor Technical Data Package (TDP) requirements and
evaluation methodology is not structured in such a way that

supports a high fidelity evaluation of software safety.

The main recommendation that may be derived from this analysis is that
the SSSTRP review process may be improved with the introduction of a
methodology that can be used by both the SSSTRP members and software
vendors to evaluate software safety. Providing the SSSTRP community with
high-level models that may satisfy a portion of the software safety assessment
process improves the current inspection-based evaluation methodology. Without
a high-level modeling process, the alternative is to implement the system and to
perform testing. Manual testing is a very expensive and timely alternative, which
may be partially satisfied using the prototype methodology and tools that are

covered in Chapter Ill. Additionally, consider the following advantages:

21

e Short Feedback Cycles - Automating system/business processes
start with process design. The creative process of redesign requires
iterations of your ideas. The modeling timeline should be as short
as possible to align the results of each step with its input. MP
satisfies this requirement in short order as there are only seven

total constructs required to model in MP.

e Involving Domain Experts in Model Development - Because MP is
easy to learn, teaching domain experts how to model in MP is
critical to shortening the SSSTRP evaluation process. Closing the
knowledge transfer gap between business and IT may result in
models that require less testing and include lower levels of
refinement. Our modeling methodology suggests domain experts
are part of the model development team. As identified in my
dissertation (Prototype SSSTRP Evaluation Process), the domain
experts do not create all models on their own, but they are a part of

the team with technical people.

Chapter Il describes the research for suitable software safety modeling

frameworks.

22

Il. REVIEW OF PREVIOUS WORK

A. INTRODUCTION

The literature review discusses the current state of methodology and tools
within software safety domain, with specific focus on enterprise systems. This
review contains information about the COTS integration risks, vendor selection,
software acquisition, software architecture, the Navy’'s Open Architecture
Enterprise Program, abstract modeling methodologies, and software safety
standards and frameworks. The goal of this chapter is to review the current state
of technology in order to determine if a potential solution exists that may reduce

the vendor failure rates within the SSSTRP process.

The Navy’'s SSSTRP process has been using both commercial off-the-
shelf systems (COTS) and open architecture (OA) approaches to satisfy the
software requirements for new and emerging technologies associated with naval
weaponry. The acquisition process of COTS-based software exposes an
organization to the potential for operation failure due to discontinued support of
the product; acquisition or dissolution of the vendor; or aging software becoming
less compatible with newer software that has related functions. However, the
risk profiles of (COTS) software and customized software vary and may provide
different advantages and disadvantages to the implementation of new systems.
In an attempt to evaluate the effects of both COTS and OA approaches to naval
weaponry software safety requirements, the literature review chapter covers both

COTS-based solutions and custom development.

B. SOFTWARE SAFETY RISKS WHEN EVALUATING A COTS
SOLUTION

COTS software is a popular software choice for organizations that want to
acquire and implement software quickly and easily. However, lack of control
over the software configuration or lack of ability to customize the software may

lead to a less than optimal solution for the software installation, as well as making

23

the customer unduly dependent on the vendor. Chapter II.B. discusses the
software safety risk assessment process for COTS, as well as the particular risks

associated with COTS software acquisition.

C. GUN WEAPON SYSTEM SOFTWARE SAFETY RISK: SOFTWARE
OBSOLESCENCE

One of the major software safety risks of COTS is obsolescence (Merola,
2006). Merola defined software obsolescence as follows: “Software applications
become obsolete when they are retired from use and taken off the market due to
technology advancements, decrease in product popularity, or other market
factors.” Merola studied the issue of software obsolescence in military
applications, where systems development moves slowly enough that software is
often considered to be obsolete in civilian systems before it even makes it into
military systems. While most civilian development does not move as slowly as
military development, the problem also plagues the civilian market. Merola
described software obsolescence risk in the systems design, integration,
production, and program management environments rather than in the
operational environment. Merola remarked that the specific risk in software
obsolescence was, “the inability to maintain an infrastructure to properly integrate
the systems, develop, maintain, or troubleshoot hardware or software code.”
Merola distinguished between logistical, technical, and functional obsolescence
as well. Logistical obsolescence is the point at which system support, new
licenses, or expansions are no longer available from the vendor (Merola, 2006).
Functional obsolescence occurs when the software no longer functions as
required or cannot be modified to perform required tasks, and technical
obsolescence occurs when technical specifications of the system have been
overtaken by technical advances (Merola, 2006). Thus, a system may remain
functionally useful even after it has become technically obsolete, and it may
remain technically and functionally useful even after its logistical obsolescence.

Merola provided a number of recommendations for avoiding software

obsolescence risk when utilizing COTS products for systems development. The

24

first of these recommendations was to include an analysis of potential
obsolescence in the market analysis research typically performed during the
software acquisition process (Merola, 2006). The market analysis is performed
to determine relative software quality, cost, and other features of the software.
Although software vendors are not typically willing to reveal their software
obsolescence plans, an examination of the vendor's historical patterns of
software obsolescence and their software renewal cycle may provide insight into
the likelihood of obsolescence in the product being chosen (Merola, 2006). The
market analysis should include not only the vendor’s obsolescence planning, but
also an investigation of the current state of the technologies in use and how they
may engender technical obsolescence in the near future (Merola, 2006).
Although the market analysis cannot prevent all potential risk from software
obsolescence, it may help an organization avoid implementation of a system with
potentially obsolete COTS components, as well as giving a potential timeframe

for the obsolescence of the component in use (Merola, 2006).

Leveson argued that the key to understanding safety lies in the
understanding that no one component failure or no human error ever occurs in
isolation - an accident is a result of some systemic problem (Leveson, 1995).
Leveson argues that more than ever, software engineers/architects/managers
must understand the responsibilities of software safety and develop the skills
needed to anticipate and prevent accidents before they occur. Professionals
should not require a catastrophe to happen before taking action. Leveson

examines the following software safety fundamentals:

e Demonstrate the importance of integrating software safety efforts

with system safety engineering

e Describe models of accidents and human error that underlie

particular approaches to safety problems

e Present the elements of a software program, including
management, hazard analysis, requirements analysis, design for

safety, design of the human-machine interface, and verification

25

Software allows unprecedented levels of complexity and new failure
modes that are starting to overwhelm the standard approaches to ensuring
safety. Software obsolescence in naval gun weapon systems carries an inherent
risk that requires continual software safety assessments, with specific focus on

how the software acquisition process may affect legacy systems.

D. VENDOR SELECTION SOFTWARE SAFETY RISKS

The choice of vendor for the provision of gun weapon system changes
carries with it a number of risks that may affect the SSSTRP evaluation process.
These risks include product availability, schedule slippage, vaporware,
modifications to the product that disrupt system compatibility or design, inter-
component compatibility, and lack of continued support (Rehman, Yang, Dong, &
Ghafoor, 2005). As in obsolescence and requirement mismatches, a market
survey before the choice of a COTS vendor will mitigate the potential for vendor-
based risk, but there is no way to eliminate the risk due to changes in software
components, something that all software undergoes as new vulnerabilities and
bugs are exposed (Rehman, Yang, Dong, & Ghafoor, 2005). Therefore, a
decision-making framework is needed to help minimize the risk from vendor
changes and unreliability that may help in avoiding some of the more common
risks, such as schedule slippage and vaporware (Rehman, Yang, Dong, &
Ghafoor, 2005).

E. REQUIREMENTS AND COTS CAPABILITY MISMATCHES: A
SOFTWARE SAFETY RISK

A potential SSSTRP evaluation risk is the mismatch between systems
requirements and COTS capabilities. “Such mismatches are inevitable as COTS
products are made for broad use while system requirements are specific to their
context,” (Mohamed, Ruhe, & Eberlein, 2007). The issue of COTS capability
mismatch is particularly relevant to naval gun weapon systems as a significant
risk may be posed for successful product integration into an existing system. If
the degree of mismatch is too great between the system requirements and the

capability of the chosen COTS system, excessive resolution costs for providing

26

“glueware” and other customized changes to the system may result in
unidentified software safety risks, or the system could simply be made unsuitable
for the use to which it will be put (Mohamed, Ruhe, & Eberlein, 2007).

The use of formal decision support systems, rather than an ad hoc
approach has been recommended (Mohamed, Ruhe, & Eberlein, 2007) to
resolve these requirements/capabilities mismatches. Also recommended is the
use of a formal method to determine if the mismatches can be resolved and, if
so, the most efficient choice of resolution methods (Mohamed, Ruhe, & Eberlein,
2007). A decision support framework, called Mismatch Handling for COTS
Selection (MiIHOS), is provided as a means of comparing the cost, effort, and risk
of resolution actions for requirements/capabilities mismatches in COTS-based

software implementations (Mohamed, Ruhe, & Eberlein, 2007).

F. SOFTWARE ACQUISITION EVALUATION: PERFORMANCE AND
RELIABILITY

In a naval gun weapon system, software performance and reliability are
high-priority requirements when evaluating a potential software solution. The
development of nonfunctional requirements, including performance aspects,
software quality, speed of execution, and other quality of service factors was a
latecomer to the component-based architecture paradigm (Bertolino & Mirandola,
2004). Initially, component-based architecture was concerned only with
functional specifications—the way in which the component could be used and the
component’s functional purpose. In order to ensure performance of component-
based systems, care must be taken in the architectural specification and
development of the system, and as much information as possible about the
components must be gained (Bertolino & Mirandola, 2004). However, this
approach may not be sufficient because component-based architecture is often
relying on different systems that may not be fully compatible with each other.
This may slow development or reduce the performance of the system.

Reliability is another software safety consideration that may affect the

overall usefulness of the component-based system. “One of the motivations for

27

specifying software architectures explicitly is the use of high level structural
design information for improved control and prediction of software system quality
attributes” (Reussner, Schmidt, & Poernomo, 2003). However, with component-
based architecture, in some cases the specifics of the individual components
(particularly nonfunctional characteristics such as component reliability) may not
be known explicitly and must be determined either during the implementation of
the system or, less ideally, after the system has entered use. Some specific
attributes that may not be known about the component include the usage profile
and the required context (Reussner, Schmidt, & Poernomo, 2003). The usage
profile of a software component includes how often it is used as well as under
what circumstances; thus, a software component that is used infrequently may
not be as well understood as those that are used frequently. The required
context includes the other components within the system, as well as external
components like middleware, operating systems, and network services, any of

which may prove to be unreliable.

These parameters were used to create a predictive model of software
reliability that took into account not only the component reliability, but also the
potential interface with external components (Reussner, Schmidt, & Poernomo,
2003).

Tamura et al. provided a similar model which uses a stochastic approach
to software reliability (Tamura, Yamada, & Kimura, 2006). These authors
specifically recommend including the integration and testing stages of
development in the main software development phase, in order to head off any
difficulties observed with the component’s reliability during the design stage
(Tamura, Yamada, & Kimura, 2006). Although these models are highly technical,
they can be used by component-based system architects to detect issues with
component reliability and circumvent them by either redesigning the system
dependencies or choosing a more reliable component. A more user-friendly
modeling methodology that allows the nontechnical stakeholder to visualize the
potential software safety scenario is needed. Additionally, integration of the

models by Tamura et al. and Reussner et al. are not usable by SSSTRP

28

evaluation process due to their level of complexity, the time requirements for

development, and the inability of the stakeholder to understand the results.

G. SOFTWARE ARCHITECTURE MODELS AND CONSTRAINTS

UML (Unified Modeling Language) is commonly used to design and
analyze component-based systems (Booch, Jacobson, & Rumbaugh, 2000)
(Coronato, d'Acierno, & De Pietro, 2005), and is the current tool of choice when
modeling naval gun weapon systems. Specifically, D.Harel's state charts are
commonly used when modeling system states (Booch, Jacobson, & Rumbaugh,
2000). The major problem with state charts is that the process of creating a
formal relationship between the system and the state chart is extremely difficult
and highly complex, and thereby too time consuming to be practical for the navy

gun weapon system acquisition process.

These modeling practices are meant not only to provide a blueprint for the
system design, but also to test the system’s fidelity to requirements and design
specifications following implementation. Coronato et al. (2005) remarked that:

By defining the fidelity of the model as the measure of the

correspondence between the model and the final system, it can be

stated that UML enables designers to produce low fidelity models to
capture high-level system characteristics in the early design phase,

as well as high-fidelity models to specify low-level system details in
the late design phase. (Coronato, d'Acierno, & De Pietro, 2005)

Other significant advantages of using the UML modeling specification are
that it creates a standard representation for use between development teams,
such as development efforts between a potential vendor and the organization
contracting the development. One problem with the use of UML, however, is that
there is no way to represent design constraints upon the system, particularly
during translation to another language for implementations, such as IDL
(Implementation Definition Language) (Auguston, Program behavior model
based on event grammar and its application for debugging automation, 1995).
According to these authors, “Design by Contract” is the practice of contracting a

vendor or outsourcer to provide custom or semi-custom software. The “Design

29

by Contract” practice is dependent on the availability of constraints in order to
enforce the design practices required within the system (Auguston, Program
behavior model based on event grammar and its application for debugging

automation, 1995).

Constraints, which are derived from high-level business requirements or
business rules, provide the explicit requirements definition for the software
system design. Constraints can be difficult to manage between software
components, especially in cases where the components do not have a consistent
way in which they handle the constraint processing. A modeling language that
would allow for the definition of constraints in a way in which they can be passed
from component to component is described as Constraint Description Language
(CDL) (Coronato, d'Acierno, & De Pietro, 2005). The CDL language was derived
from standard OCL and was adapted to component architecture. It is noted that
ignoring the problem of constraints was not possible if the end result of the effort
was to be a coherent software system; however, there was no readily available
way in which to transfer constraints between different components (Auguston,
Program behavior model based on event grammar and its application for
debugging automation, 1995). The lack of consistent treatment of constraints
between components represents a significant weakness in component-based
architecture. As the authors noted, the issue of managing shared constraints is
not a difficulty that cannot be overcome; however, it should remain a
consideration in development of a component-based software system (Auguston,
Program behavior model based on event grammar and its application for

debugging automation, 1995).

The development of languages specific to component-based systems
architecture and design has been heavily researched over the last ten years, with
new architectural languages, such as AAL, being the byproduct (Booch,
Jacobson, & Rumbaugh, 2000). Component-oriented programming that
implements the systems is a recent development in software engineering.
Fabresse et al. described a conceptual language for component-based

architecture and design (Fabresse, Dony, & Huchard, 2008). Their language,
30

SCL (Simple Content Language), described only the basic and essential
elements of a component-based design language, as derived from a large
number of existing component-based programming languages, like ComponentJ,
ArchJava, Julia/Fractal, Lagoona, and Piccola (Fabresse, Dony, & Huchard,
2008). It is noted that the impetus for component-based design has recently
shifted from software reuse at design to reduction of evolution costs by design for
software reuse (Fabresse, Dony, & Huchard, 2008); thus, it is necessary to have
customized ways in which to provide the integration or “glue” that allows
components to be combined into a cohesive system.

Combining systems via “glue” has an inherent requirement to evaluate a
potential addition to an existing architecture. Auguston (2009) suggests an
approach to formal software system architecture specification based on behavior
models, (Auguston, Software architecture built from behavior models, 2009).
Monterey Phoenix (MP) (Auguston, Monterey Phoenix, or How to Make Software
Executable, 2009) is a methodology that defines the relationship between system
interaction and the environment. The MP methodology includes the use of event
grammar that generates event traces using ordered logic. The MP framework
provides the ability to formally evaluate software architecture using assertions.
Auguston showed how MP contains the ability to check Assertions. MP is
particularly applicable to the naval gun weapon system software safety domain
because it (1) is easily understandable by the nontechnical user; (2) supports
reuse as the models are designed at the abstract level with no requirement to
provide software details; (3) formalizes the evaluation of potential naval gun
weapon system software solutions by creating assertions of unsafe software
safety states and testing for counter examples of assertions; and (4) can output
visual representations of scenarios in formats that are easily understood
(Auguston, Michael, & Shing, Environment behavior models for automation of

testing and assessment of system safety, 2006).

Auguston’s work in Environmental Behavior Models is particularly
applicable to the naval gun weapon system software safety domain as the

SSSTRP requires exhaustive testing before modifications to a naval gun weapon

31

system are approved. Jackson's “Small Scope Hypothesis” (Jackson, Software
abstractions: logic, language, and analysis, 2006) (Jackson & Damon, Elements
of style: Analyzing a software design feature with a counter example detector,
1996) argues that a high proportion of bugs can be found by testing the system
within some small scope. Jackson’s hypothesis, combined with Auguston’s work
in environmental modeling, is particularly applicable when attempting to solve the
issue of evaluating software safety issues during the naval gun weapon system

acquisition process.

Software safety research in real-time systems has led to the development
of the Tempo Toolkit. The Tempo Toolkit is an extension of the IOA toolkit,
which provides a specification simulator, a code generator, and both model-
checking and theorem-proving support for analyzing specifications. The toolkit
consists of the Tempo language, which closely matches the format of the
pseudo-code used for IOA. The Timed I/O Automaton Language (TIOA)
provides the semantic basis for the Tempo Toolset (Archer, Lim, Mitra, Lynch, &
Umeno, 2008).

H. SOFTWARE ARCHITECTURE FLEXIBILITY: AN ACQUISITION RISK

The SSSTRP evaluation process was meant to support a streamlined,
thorough evaluation of proposed gun weapon system changes. Naval gun
weapon systems require architectural flexibility in order to respond to new and
improved software capabilities that strengthen a ship’s weapons systems. One
of the major benefits of component-based architecture is the flexibility that is
allowed by the process. Flexibility is necessary because “software needs to be
flexible in order to be adapted to new or changing work situations in its context of
use” (Wulf, Pipek, & Won, 2008). The flexibility with which software systems are
developed will carry through to the implementation stage of the process and will
be required to continue past the point of implementation in order to provide for
changing requirements. Component—-based architecture is ideal for providing
flexibility because individual components can be upgraded or replaced as needs

change. For example, a system with a user interface component that is separate

32

from a database component can have its user interface changed as user
requirements or technologies evolve, without affecting the existing database
component (Wulf, Pipek, & Won, 2008). Component-based development has the
potential to reduce maintenance costs, as the components can be updated only
as needed, rather than requiring a full refactoring of the system in order to update
one part of the system. Wulf et al. described an end-user framework that
described a way in which the software development process can be flexible
enough to allow changing user needs while reducing the difficulty and
maintenance costs associated with these changes (Wulf, Pipek, & Won, 2008).

4 N

Solution: Manageable
Software Flexibility

Challenge: i Chalienge:
Re-Design i End Users as
during Use Interface Designers
Lavel
Architectural
Level

. /

Figure 3: CBD Flexibility Framework (From Wulf, Pipek, & Won, 2008)

Component-based architecture and software design provides a way to
design systems to account for system requirements without excessive cost or
development time. It is based in assembling software components, which may
be either custom-designed vendor-sourced custom components, semi-custom
components (such as ERP modules), or commercial off-the-shelf (COTS)
software components. Although the component-based architecture process is
flexible and modular, there are difficulties relating to the black-box nature of
many components, including difficulty evaluating nonfunctional requirements like

reliability and software quality, and interoperability between components.

33

l. DEPT OF THE NAVY OPEN ARCHITECTURE ENTERPRISE (OA
ENTERPRISE) PROGRAM

The requirement for naval gun weapon systems to use open architecture
was established in 2005 in a memo from the Navy Program Management Office.
The memo states that, “Naval OA transformation must match the rapid evolution
in commercial and military technology. Not only must we shorten the kill chain
across the family of systems; we must also shorten the cost it takes to deliver
capability requirements” (Department of the Navy, 2005). Motivations for the
adoption of open architecture included reduction of cost and time invested in
developing and implementing new systems, and the ability to design systems
that are technologically advanced, as compared to the previous development life
cycle, in which the end product was typically obsolete by the time it was placed in
service (Department of the Navy, 2005). Principles for the OA system
implemented by the Navy include the following:

e Modular design and design disclosure

e Reusable software components selected using a best-in-breed

strategy, rather than the previous single-vendor strategy

e Interoperable joint warfare communication and information

exchange capability

e Design for life cycle affordability, including tactics such as system
design and development and support for COTS obsolescence

e Encouragement of alternate solutions and sources in order to
improve competitive practices and system capabilities (Department
of the Navy 2)

The OA Enterprise system is required to be integrated into all Navy
systems and system requirements, and is one of the first identifiable federal
programs that require open architecture in the system (Department of the Navy,
2005). The Navy established an Open Architecture Enterprise Team (OAET) to

oversee the efforts and ensure that the open architecture requirement was

34

respected in all ongoing and future Navy system designs. The document also
included short-term objectives and system requirements to begin using the OA
Enterprise program immediately while the long-term details were worked out.

The program has been active since that time.

The Navy OA model is described in the OA Assessment Model
(Department of the Navy, 2005). The OAAM is built on a matrix framework using
business and architectural/technical characteristics; the level of compliance of
each system is assessed on the individual criteria. Figure 3 demonstrates the
OAAM'’s matrix; the chart details the level of business and technical compliance
(Department of the Navy, 2005). Each level of the model is accompanied by
business integration and architectural technical characteristics; in both axes, “0”
represents the least integration of open architecture principles, while “4”

represents the highest level.

OA

Assessment Model
Versien 1.0 [8idarch 2005)

Buginess
- N e

Figure 4: OA Assessment Model Matrix (From Department of the Navy,
2005)

35

Level Business Technical
0 Isolated Closed
1 Connected Layered
2 Migrating to openness Layered and open
3 Common Common
4 Open and net-centric Enterprise
Table 3: OAAM Development Levels (From Department of the Navy, 2005)

The OA Enterprise Contract Guidebook is produced by the Navy to ease
the integration of open architecture as a design requirement. The OA Enterprise
Contract Guidebook offers insight into the program’s intentions toward the use of
open architecture and how it handles the acquisition of it. The guidebook,
designed as part of the Navy's Open Architecture Enterprise (OA Enterprise)
initiative, is intended to “provide Program Managers, Contracting Officers, and
their supporting organizations with guidance and example contract language to
assist them in incorporating open architecture principles into their contracts”
(Department of the Navy, 2008). The document also provides insight into the
use of open architecture within the Navy, including its history, requirements, and

scope.

The intent of the document is not to enforce the use of the language
required, but to suggest appropriate language for the contracts used for
acquisition of open architecture products. The document also provides an
overview of Naval OA architecture and intent. The principles of design include
use of both COTS and open standards in order to ensure interoperability and
fast-swap capabilities for software, and includes standard interfaces to ensure
system communications capabilities (Department of the Navy, 2008). It is noted
that regardless of the source of the software component, it should be compliant
with the OA Assessment Model (OAAM) at the highest level possible for the

given system.

The Contract Guidebook provides insight into the software and systems
development process required by the Navy. The OA Enterprise program was
undertaken to ensure that the Navy had access to information technology that

36

was up to date, maintainable, and reliable. By using the open architecture
paradigm as a requirement for new systems design, the Navy gained the ability
to update its systems easily, to interface its systems, and to ensure that its
systems could remain functional in spite of COTS obsolescence. It also placed
the government in a stronger position by requiring that the purchasing
organization seek out and exercise intellectual property and data rights. Few
Navy documents described live projects that had been undertaken using the new
guidelines; examples of the outcomes of these guidelines were derived from the
literature rather than Navy documentation.

J. SOFTWARE ACQUISITION CHALLENGES OF A NAVAL GUN
WEAPON SYSTEM

Testing and software evaluation of a naval gun weapon system that is
composed of COTS products is a known problem (Bhansali, 2005). Azani
discussed the specifics of testing and evaluation of the open system in terms of
strategic requirements and goals (Azani, 2001). Azani noted that the use of open
systems provided government IT systems with advantages, including the ability
to take advantage of best-in-breed commercial systems and ensure
interoperability, commonality, portability within the system, and the ability to
replace obsolete systems. Without careful system design, the testing and
evaluation of a system assembled from multiple commercial components could

be exceptionally difficult to complete successfully.

The design of a testing system that can handle multiple products from
various vendors is complex, particularly in cases where some parts of the system
may be COTS that do not have open-code bases to allow specific design of the
test systems. The testing and evaluation of an open system should be
determined before implementing the system, and priority should be given to
designing for test and evaluation ease (Azani, 2001). Rajsuman and Noriyuki
presented one solution to the problem. The Open Architecture Test System was
designed to provide a method to test the implementation and integration of open

architecture systems incorporating modules from many vendors (Rajsuman &

37

Noriyuki, 2004). The architecture proposed was intended to test the full
operation of the system. The architecture also allowed for live testing and
simulation, and was intended to decrease testing time and simplify the testing
process (Rajsuman & Noriyuki, 2004). Integrated system and user test
architecture would be a useful addition to an organization transitioning to an open

architecture requirements paradigm.

Another software safety issue that may emerge in the use of an open
architecture is the dependability of the system. Barrett offered one solution to
ensuring reliability in open architecture systems, the Delta-4 project, which is
defined as “an open, fault-tolerant, distributed computing architecture for use in
application areas such as computer-integrated manufacturing, process control,
and office automation” (Barrett, 1993). The system was intended to address the
issue of reliability in open architecture systems that were used in applications
that required reliable throughput and response time; however, the author noted
that the system was not designed for mission-critical or safety applications
(Barrett, 1993). The system was based on a Dependable Communication
System with the components of the architecture spread through computers and
linked by the Dependable Communication System. Software components could
be replicated to provide redundancy, with the caveat that host machine
configurations had to be consistent across machines in order for the redundancy
capability to be used (Barrett, 1993). The communications system allowed for
multi-point communication, providing for robust and dependable communication
between replicated units. The system also offered fault-tolerance in order to
provide a level of protection against hardware failures and a variety of

communication mechanisms (Barrett, 1993).

Although Barrett's system is not intended for mission-critical systems, it
provides a blueprint for how the requirement for dependability may alter the
design of an open system. Enhancements to the system would be required in
order to allow for the level of dependability required in more mission-critical
applications, but the system provides a framework for designing a dependable

open system.

38

A third issue in analyzing potential software solutions for a naval gun
weapon system is the problem of trusted computing. Naval gun weapon systems
have a strict requirement to restrict access to trusted users (and systems) and to
assure that security level. Trusted computing within an SoS becomes more
difficult because components and their authentication methods may be changed
in an ad hoc manner and the overall design of the system may not be set at the
initial use of the system (England, Lampson, Manferdelli, Peinado, & Willman,
2003).

K. SOFTWARE SAFETY REQUIREMENTS FRAMEWORKS

Initial searches found numerous frameworks related to software safety.
This review is focused on frameworks that make the software package a primary
target of the evaluation. While some of these frameworks have been established
in the working software development environment, others have only been
described within the academic computer science area. The majority of those
identified standards are from military or other safety-critical areas rather than
from the business or consumer software environment. Most of these standards
have been developed for use in military, transportation, medical, communication,
and nuclear power systems (Medikonda & Panchumarthy, 2009). As Barrett
Medikonda and Panchumarthy noted, most of these systems are real-time
control systems, lending an extra level of complexity to safety requirements

design.

The research describes a number of frameworks and identifies potential
advantages and disadvantages for use within the Naval Weapons Gunfire
software systems. Table 4 contains the known software safety requirements
standards that use software safety and security features as a main component

within the software specification process.

39

Standard Description

Requirements for

MoD 00-55 Safety-Related
Software in [UK]

Defense Equipment

Safety Management
MoD 00-56 Requirements for [UK]
Defense Systems

Software

DO-178B Considerations in

Airborne Systems and
Equipment
Certification

Safety Assessment

ARP 5754 Process on Civil

Airborne Systems and
Equipment

Mil-Std-882 System Safety Program
Requirements

Software Safety Hdbk Software System Safety
Handbook

Functional Safety of

IEC 61508-3 Safety-Related
Systems, Part 3:

Software Requirements

Software for

IEC 60880 Computers in Safety

Systems of Nuclear
Power Stations

Application of Safety

ANSI/ISA-S84.01 Instrumented Systems

for the Process Control
Industries

Medical Device

ANSI/AAMI SW58:2001 Software Life Cycle
Processes

NASA-STD-8719.13 Software Safety

Standard for Software
UL 1998 in Programmable
Components

Software for Railway
EN 50128 Control and Protection
Systems

Development
MISRA Auto Std Guidelines for Vehicle
Based Software

IEEE 1228 Standard for Software
Safety Plans

Table 4: Known Software Safety Standards (Bhansali, 2005)

40

As noted in Table 4, most of these systems are designed for use in safety-
critical real-time applications, indicating that characteristics of any of them could
be considered appropriate when examining the potential applicability to the Naval
Weapons Gunfire system. However, standards such as ANSI/AAMI SW58:2001,
which focus on safety-critical application of medical software, may not be as
appropriately applied to the current problem as other defense standards may be.
Identified standards that may be most applicable to the current research problem
include MoD 00-55, MoD 00-56, DO-178B, Mil-Std-882, Software Safety Hdbk,
IEC 61508-3, NASA-STD-8719.13, and IEEE 1228. The MoD 00-55 and MoD
00-56 will be excluded from consideration due to their focus on the United
Kingdom’s military requirements which, although similar to those of the United
States, are not completely applicable. A specific study of IEC 61508-3 and
NASA-STD-8719.13 are found later in this chapter, as both are highly applicable

to the current research problem.

Software requirements frameworks focused on software safety tend to be
highly customized to the environment, rather than being generic models;
although attempts have been made to define a generic software safety
requirements framework, these attempts have not been successful (Bhansali,
2005). General criteria for a software safety requirements framework have been
identified by Bhansali (Bhansali, 2005). The general subset of requirements has
been identified by examination of known software safety standards. Table 5
indicates the required elements identified in order to establish what Bhansali
describes as the minimum subset of requirements needed to generate a one-
size-fits-all software safety requirements framework. These requirements were
identified by examination of standards from across all areas of industry,
government, and safety-critical applications. Though Bhansali identified the
specific required elements for such a generic framework, he did not make any
determination of how these elements should be implemented. Bhansali’'s model
of a generic requirements framework indicated five levels of security, with
different levels required for each of these models; the assumption was that there

would be different requirements per level of safety, indicating different

41

requirements for safety standards and specifications. The application domain
would determine in most cases which of these requirements was needed at
which level (Bhansali, 2005). The requirements for each level are identified
within this research; however, the requirements at each level would need to be
determined by the overall requirements of the system in question, rather than

through a generic modeling process. (Bhansali, 2005).

Functional or preliminary System safety

hazard assessment

assessment

Software requirements
Validation

Special software
Architecture

Safe design subset

Safe code subset

Traceability analysis

Independent code
Analysis

Derived requirements
Validation

Equivalent class testing

Boundary value testing

Machine instruction
Coverage

Machine branch
Coverage

Data set/use analysis

Control flow analysis

Stack analysis

Timing analysis

Numeric analysis

Complexity Software quality
Measurement Assurance
Software configuration Software data load
Management Management
System safety
Verification
Table 5: Required Elements for a Generic Software Safety Requirements

Framework (From Bhansali, 2005)

A truly generic model has not yet been established to drive the
construction of software safety in any application domain. A number of models
that increase the generality of existing models or provide a general model that
can be used to identify the safety requirements of a given system have been
constructed. One recent model which integrates the factors, criteria, and models
(FCM) approach of McCall and Boehm (more commonly used in quality analysis
of software that is not highly safety-aware) was constructed by Medikonda and

42

Panchumarthy (Medikonda & Panchumarthy, 2009), and is demonstrated in the
figure below. As can be seen in the system, the primary interaction with the
requirements process within the framework is the completeness of requirements
(based on system hazard analysis), and the identification of safety critical
requirements is the main area in which criteria regarding software requirements
interact. Many distinctions between levels of safety requirements are used in the
model. These levels include safety requirements, which specify how safe the
system should be (identified in many models by safety levels, as noted by
Bhansali); safety-significant requirements, or functional and other quality
requirements for safety requirement achievement; safety system requirements,
which are requirements for internal safety systems such as automated shutoff
switches, fire protection systems, etc; and safety constraints, or requirements for
use of specific safety systems (Medikonda & Panchumarthy, 2009). Appropriate
identification within the requirements-setting stage is key in Medikonda and
Panchumarthy’s model for identifying the requirements for software safety
quality. Medikonda and Panchumarthy’s model has not yet been placed into
wide use, and stands as a potential generic model rather than a tried and tested

one.

43

Criteria

Factor

Figure 5: Software Safety Framework (After Medikonda & Panchumarthy,
2009)

L. NASA SOFTWARE SAFETY STANDARD (NASA-STD-8719.13)

One of the most comprehensive software safety requirements frameworks
available is the NASA standard NASA-STD-8719.13 and its accompanying
support materials and frameworks. The standard is applied to all software used
in NASA (NASA, 2009), which makes the comprehensive software safety
standard particularly applicable to the SSSTRP domain. The NASA standards
for software safety have emerged from examination of the causes and effects of
aerospace accidents, and determination of requirements for software safety that
have emerged from the area (NASA, 2009). NASA-STD-8719.13 is based on the
NASA Safety Manual (NPR 8753.3), which identifies the characteristics of safe
systems and describes how these systems can be appropriately identified
(NASA, 2009). The standard is accompanied by a guidebook, NASA-GB-

44

8719.13, which offers information on how the standard should be applied within
the process of software engineering and requirements determination. The NASA
standard is intended to apply to custom-engineered software, commercial off-the-
shelf (COTS), modified off-the-shelf (MOTS), and government off-the-shelf
(GOTS) software (National Aeronautics and Space Administration, 2004). The
NASA standard is one of the most fully-featured software safety requirements

available.

NASA 8719.13 identifies software safety requirements starting in the
conceptual phase of the software design or acquisition process (National
Aeronautics and Space Administration, 2004). The 8719.13 document purpose
is described as being “to provide requirements to implement a systematic
approach to software safety as an integral part of the project’s overall system
safety program, software development and software assurance processes”
(National Aeronautics and Space Administration, 2004). Process and technical
requirements for system safety are included in the description. Requirements for
identifying safety-critical applications and systems that will impact these safety-
critical applications, project management, planning and control activities, life
cycle analysis, and software safety throughout the software life cycle are
addressed; also identified are areas that would require modified approaches to
software safety, such as COTS, MOTS, or GOTS systems (National Aeronautics
and Space Administration, 2004). Legacy systems and the regulations for
ensuring that these systems adhere to current safety standards and
requirements are addressed (National Aeronautics and Space Administration,
2004).

The NASA standard contains a comprehensive discussion of how to
determine whether or not a given system is safety-critical. For the evaluation, it
uses guidelines including factors such as the cause or contribution of a hazard,
hazard control or mitigation, and processing safety-critical commands or data
(National Aeronautics and Space Administration, 2004). The detailed application
behavior identification approach is intended to provide a complete risk

assessment of how the software will be used, as well as what other requirements

45

exist for its determination. The process of identifying software safety
requirements is performed through a preliminary hazard analysis (PHA), or risk
assessment process, which examines the role of the software within the overall
system. Software evaluation occurs during the conceptualization phase, before
the planning for custom software or acquisition of non-custom software begins
(National Aeronautics and Space Administration, 2004). The process of the PHA
involves identifying hazards for specific requirements or system design choices
for the software, and an overall system safety analysis (National Aeronautics and
Space Administration, 2004). These analyses are then used to construct specific
safety requirements for the software in terms of functionality and contextual
placement within the system as a whole (National Aeronautics and Space
Administration, 2004). These requirements are designated as software safety
requirements, which are then integrated into the design or acquisition process
alongside other functional and nonfunctional requirements for the software
(National Aeronautics and Space Administration, 2004). A software safety plan
is established and is maintained alongside the software as a record of the safety
choices that were made during the conceptual stage of the design process. The
model identifies archival processes that should be undertaken. The
accompanying Guidebook can be used to operationalize the standard within the
organizational environment; although the Guidebook is specific to NASA’s
organizational and development structure, much of the information within it is

applicable to the naval gun weapon system domain.

M. IEC 61508-3

IEC 61508-3 is the IEC standard subsection that identifies the process of
requirements determination for safety-critical applications (Medikonda &
Panchumarthy, 2009). Although IEC 61508 was only published between 1998
and 2000, it had been in development since the mid-1980s through a Task Group
designed to assess the challenges involved in ensuring software safety in
programmable electronic systems (PES); these systems include computers and

real-time embedded systems (Bell, 2006). There are currently eight identified

46

parts of IEC 61508, including Functional Safety and IEC 61508; General
Requirements; Requirements for Electrical, Electronic and Programmable
Electronic Systems; Software Requirements; Definitions and Abbreviations;
Examples of Methods for the Determination of Safety-integrity Levels; Guidelines
on the Application of parts two and 6; and Overview of Techniques and
Measures (Bell, 2006). Part 3 (Software Requirements) holds the normative

requirements (indicated by “shall”) that are applicable (Bell, 2006).

As in NASA-8719.13, IEC 61508's safety requirements determination
process contains a preliminary evaluation of the requirements for the system
design (Bell, 2006). The focus is safety, as determined at the functional
specification level, since research has indicated that the functional specification
process is where the majority of safety-related failures in software occur (Bell,
2006). IEC 61508 is built on four safety integrity levels, which identify potential
failure points and identify measures for overcoming the potential for failure within
these systems (Bell, 2006). These safety integrity levels are identified through
the probability of failure, although these identifications are different depending on
the level of the function’s demand and/or continuous operational mode (Bell,
2006). In the case of a low-demand software system or component, the
probability is defined as the probability that the component will fail to perform
when demanded, while for high-demand and continuously operating systems, the
definition is the probability of a dangerous failure per hour (Bell, 2006). IEC
61508 takes a risk-based approach to determining software safety, identifying the
potential outcomes of a failure as well as its probability in order to determine

whether a design is acceptable or unacceptable in terms of safety (Bell, 2006).

IEC 61508 identifies requirements determination for software safety
requirements and includes a complete software life cycle approach to
determining software safety in the overall case (Bell, 2006). Figure 5

demonstrates the life cycle approach in detalil.

a7

5. Bafary Fequraments
| Alptation

& Overd | & Cverall |
O e o e 7 {:'::‘;1” ingiailatzn ard 9. SRS ESFES
maitenance] R
pisnneg | plarsing
|12 Owioenil matalisosn anid
| coTrassening
| v Overall nafuty :
| valdanan AL Y
i b Crosrall cpsration, 1% owéal madicaon and
il mantenerce and repan 1 retroft
| - |
16 Decammisaoring ar
| A

Figure 6: IEC 61508 Life Cycle Framework (From Bell, 2006)

As demonstrated by Bell's IEC 61508 Life cycle Framework, the focus on
safety requirements is during the conceptual process and before integration.
Unlike the NASA standard, little attention is paid to off-the-shelf software or the
modification of legacy software, which could be rectified by modification of the
framework structure in order to meet the needs of the current research.

Although IEC 61508 is presented as a universal standard for software
safety requirements, the framework lacks focus and features for other areas of
software design (vitally, in this case, excluding military applications), and “the
approach taken is ‘do it all’ or to justify not doing it at all” (Bhansali, 2005). Thus,
IEC 61508 does not meet the requirements for naval gun weapon system
software safety evaluation. The IEC 61508 standard does not directly apply to
the naval gun weapon system SSSTRP environment; however, it has been used

successfully within the military system environment in the past. Although IEC

48

61508 is a paid standard, it has a record of positive application, and it is a
carefully designed standard that can be modified to meet many of the needs of

the current project.

In summary, the IEC 61508 standard is less complete than NASA 8719.13
(National Aeronautics and Space Administration, 2004), as it does not contain
requirements or specifications for functional safety or safety verification
requirements, which decreases the scope of safety requirements determination it
offers (Bell, 2006). These potential disadvantages do not remove the IEC 61508
standard from consideration for use in the naval gun weapon system domain, but
do reduce its utility and increase the amount of difficulty involved in the system’s

use.

N. SUMMARY

The literature review discusses the current state of methodology and tools
within the software safety domain, with specific focus on enterprise systems.
This review contained information about COTS integration risks, vendor
selection, software acquisition, software architecture, the Navy’'s Open
Architecture Enterprise Program, abstract modeling methodologies, and software

safety standards and frameworks.

The literature review has demonstrated the need for a modeling
methodology that can model the system’s interaction with the environment.
Additionally, a capability gap exists that enables the SSSTRP evaluation team to
accomplish an evaluation of both functional and nonfunctional requirements,
such as performance aspects, speed of execution, and other software safety
quality of service indicators. The next chapter addresses the details of a solution
to the problem of pre-acquisition software safety analysis using the Monterey
Phoenix (MP) modeling methodology.

49

THIS PAGE INTENTIONALLY LEFT BLANK

50

1. SYSTEM ARCHITECTURE MODELING METHODOLOGY
FOR NAVAL GUN WEAPON SYSTEM SOFTWARE

A INTRODUCTION

The Introduction chapter explains the specific problems associated with
the SSSTRP naval acquisition process, and the concept of the system
architecture modeling methodology that was developed to address these
problems. This chapter also contains demonstrations of prototype software that
implements the modeling methodology, as well as test cases using a naval gun
weapon system. Finally, this chapter contains a suggested prototype SSSTRP
evaluation methodology that describes how the tools may be implemented within
the current SSSTRP process.

Providing the SSSTRP community with high-level models that may satisfy
a portion of the software safety assessment process improves the current
inspection-based evaluation methodology. Without a high-level modeling
process, the alternative is to implement the system and to perform testing.
Manual testing is a very expensive and timely alternative, which may be patrtially
satisfied using the prototype methodology and tools that are covered in this
chapter.

The proposed SSSTRP evaluation methodology and tools that are
demonstrated in this chapter improve the SSSTRP evaluation process in the

following ways:
e |dentify unintended system behaviors
e Provide a high-fidelity system safety assessment
e Tools for evaluating nonfunctional requirements
e Perform assessments at appropriate levels of abstraction

The goal for the gun weapon system case study is to test a proposed
modeling tool in order to improve the current state of the SSSTRP evaluation
process.

51

B. DESCRIPTION OF A NAVAL GUN WEAPON SYSTEM

The U.S. Navy gun system diagram used for this research was provided
by the U.S. Navy's Weapons Explosive Review Board (WESERB) as part of the
documentation that accompanies the research in Chapter I. The gun weapon
system contains 17 separate systems, all connected through a single network.
The gun weapon system was modeled using MP event grammar. The modeling
application, herein referred to as "Eagle6," is the product of this research. The
Eagle6 application accepts MP modeling language and gives the user the ability
to write formal queries that return specific sets of scenarios. For the purposes of
defining limitations and definitions of scope, we have defined Scope as the

number of model iterations.

Eagle6 (explained in detail later in this dissertation) uses an exhaustive
and probabilistic approach to generating scenarios, and has the following

capability:

Eagle6 is based on executable models and is able to generate all

possible scenarios within a given scope.

e Eagle6 provides a high-level abstraction of the interaction between

a software system and its environment.

e Eagle6 supports multiple views of system architecture that are
generated from the same MP model.

e Eagle6 supports random scenario generation for statistical

evaluation.

The following is a description of the systems in the Gun weapon system

model, with the model abbreviation in brackets:
Systems Included in the Gun weapon system Model:

e C&D [CD]-Command and Decision. The software system that

performs all functions within the Aegis combat system

e AN/SPS-67 [R2D]-2-D Surface Search Rotating Radar

52

AN/SPY-1D [R3D]-3-D Air Defense and Surface Search Phased
Array Radar

Gun Mount Processor AN/UYK-44 EP/OSM [GMP]-One sub-
element of the GCS, which takes information from the GCC and

provides services to the gun mount

Gun Console Computer [GCC]-Sub-element of the GCS. It
interfaces with Aegis and other ship sensors and performs fire

control calculations and provides data to the GMP.

Optical Sight System MK 46 Mod 1-Control Display Console MK
132 Mod 0 [CDC]-The operator console used to control the MK46
Optical Sight

Optical Sight System MK 46 Mod 1-Electro-Optic Director MK 85
Mod 1 [EOD]-The Optical Sight director system (installed above the
bridge) that rotates and elevates per operator's commands. The
TV, IR, and laser range finder sensors are installed on the director,

which points them in the right position

Gun Mount Control Panel MK 437 Mod 1 [GMCP]-Backup
Operator's console installed below the gun mount. It is used in
case the main ADS console in the combat information center goes

down.

Gun Mount EX 45 Mod 4 [GM]-The 5” gun mount. Holds 20 rounds
in the drum and fires 18-20 rounds per minute.

AEGIS Display System [System_ADS]-The software that drives all
displays and console operator actions within the ship’s Aegis

combat system (The operator interface software to C&D).

ACTS [System_ACTS]-Command and Control Backup Module

53

AEGIS Clock/Gyro Data Converter Cabinets (2)
[System_ACGDCC]-System that provides time and ship’s attitude

information to C&D.
FODMS [System_FODMS]-Data Multiplexing System.

Gun Computer System [System_GCS]-System used to perform all

core gun fire control functionality.

Recorder/Reproducer MK27 Mod 1 [System_Recorder]-Part of the
GCS that is responsible for loading operational program data and

recording GCS data.

Velocimeter MK 5 Mod 0 [System_Velocimeter]-The sensor (radar)
on the MK 45 Gun Mount that monitors outgoing projectiles after
firing and calculates projectile velocity, used to improve fire control

accuracy.

Control Panel EP2 MK 281 Mod 9 [System_ CP]-The electronic
panel that is used to turn on, set up, load, and locally control the

gun mount. It is separate from the GCS.

54

AEGIS
DIsPLAY
SYSTEM

(ADE}

- OFERATORACTIONS
sl ———— CEERATOR ACTIONS

WA O 10 G LR DONS0IF
WA CTHTICA DATAMSTER

GUN WEAPON SYSTEM MK 34 MOD 1

DDG 85-90

ME 160 MOD 2

GUN COMPUTER SYSTEM

DA CHEPUAY

CORLARND
AND

DECISION CONSOLE

T GIDOE PIRDG RAN LOAD,

OPTICAL SIGHT SYSTEM
MK 46 MOD 1

ELECTRO-CPTIC
DIRECTOR

TARCET
[IATH

OJ-F1902 U -7V .
,:L-_,h'ﬁ'mE MK 26 MOD 1
‘E - = 1 MK 122 MOD O* [WAFLICHT IMACING SERECR
GUN CONSOLE COMPUTER |-'i'f£ﬂ'u-'«ﬂm’-c:5ﬂ'*fx
— W 16 A 8 ™ (R TE 7
AR)
o Sk = oF ComATIN VELOCIMETER GUN MOUNT
LLTIE LI 6 MOD 0 Fx 45 MOD 4
oo (LOCATED Ot
ANMARY KAV OF 174/0VEK 44 |- GLUN BARREL)
L EPOISN L P 2
e |ORMRE
GUN MOUNT

comianns | COMTROL PANEL

RESSE0H DATA

Y

x ?
LA L CEASE PR

RECORCER/REPROCUCER
MK 27 MOD1 "
e [IPHCCRARE
— (=15
P LESEIGH
[ATA
E h S S
DATA DISFLAY
STORAGE COMTROL
SET CCMPUTER

AMSPS-ET bl ——— TRAC DATA
ACTS ALTE 1R P -“\
CAD OR 5 COMMITER —
=
% CEFETIREL RASEEL TAMRG LY
CED e AU T AR TS AND WA B NTS
CHelE s
el ———— CHGACEMORT ETATUE
TARGET POSITICH BATES
TRACK RECUESTS,
-
ANISPY-1D DESICHATION [ALA
AEGIS SHEFS ATTITUOE ciin
ClLOCKGYRD TIRIE SECRALS
DATA
COMNVERTER SHIPS ATTHTLDE .
CABINETS THE SICHME
{33
SHIFS LATALCRHS. SPEED
FOoMs
MOTE T COLOR CHNGVERA S INTRODUCED WITH DG B0 ARD
CHAMNCGES THS 10 VBl 15 O 3
MOTEF ME™OFTICS INTRODUCED WITH DO 55 AN

CHANGES 1S 10O S B NS0 3

*REPRESENTS UPGRADE TO THE
GWS MK 14 BY HULL

GUN MOUNT
PROCESSOR

AMIUYE-44 EPIOSN

MK 437 MOD 1
WELOEITY
AL

KIATLS

DASPLAY DATA
-*LIH.H:' T AL TIUES: s

- TN

I—’-L—'\.D‘IJIH HE CHRBCaT

COMTROL FANEL
{EP2)
K 281 MOD 9

Figure 7:

55

From Gun Weapon System MK 34 Mod 1 (From Naval Gunnery Project Office PEO IWS3C)

IDENTIFICATION OF PROBLEMS FOUND IN THE PRE-
ACQUISITION SOFTWARE SAFETY EVALUATION PROCESS

1. Domain-Specific Issues Covered in This Research

The primary responsibility of the SSSTRP is to identify possible hazard

states when evaluating a proposed gun weapon system change. Our research

showed many areas of the SSSTRP process that warrant attention, but the focus

of our research was narrowed in order to enable us to focus on the following

critical issues:

Testing domain architecture models for software safety violations—The
goal of this research is to provide a solution that enables the SSSTRP to
automatically generate a number of scenarios that test for software safety

violations.

Estimation of software performance based on architecture models—The
goal of this research is to create tools that enable the SSSTRP to test
nonfunctional requirements using Formal Methods. The tool answers the
guestion, “How will the software behave once it is a part of our system?”
2. Domain-specific Issues Not Covered in This Research

e Software inspection techniques

e SSSTRP structure and evaluation methodology

e Vendor Technical Data Package design/structure

e System functionality overlap in Open Architecture (OA)

environments

e Development of more specific and effective guidelines for how to

test safety aspects of COTS software

56

D. OVERVIEW OF THE MONTEREY PHOENIX METHODOLOGY

MP was chosen for this research because it satisfies three primary needs

for this domain:

e MP has the ability to model nonfunctional requirements. Testing
how a system interacts with the environment is a critical need that
has not been available to the SSSTRP.

e MP has the ability to evaluate formal Assertions. Because MP
results are obtained from an exhaustive generation of all scenarios
within scope, determining Hazard States enables the SSSTRP to

evaluate potential system changes with greater effectiveness.

e MP has the ability to extract visual representations of scenarios,
thereby yielding a result that is usable and readable by the layman.
MP Modeling Definitions

MP is used in this domain to create a model with a set of architectural
properties. Attributes are properties of an event that may be used to define
domain model representations. Attributes are valuable as they represent a more
detailed (and measurable) application state. The intention is to model the
concept of an event state associated with the event, thereby enabling the ability

to evaluate the model for predefined unsafe states.

1. MP Scenario (Event Trace)

An Event is defined as any detectible action. A scenario is a set of events
of different types and two sets of relationships between them (IN and
PRECEDES).

A grammar rule has form:

A: right-hand-part, where A is an event type name. Event types that

do not appear in the left hand part of rules are considered atomic.

Events are visualized by small circles, and basic relations by

arrows:

57

Event Relationships IN and PRECEDES

Figure 8: MP Event Trace

MP modeling requires a ROOT event that represents the starting point for
a series of following relational events. In the following examples, R, A, B, C are

events, and the event R is the ROOT event:

e R:{ABC}-Rootevent R contains UNORDERED events
A, B,and C

R: (A B C) — Root event R contains ORDERED events A, B,
and C

e R: {* A* — ROOT event R may have zero or more
UNORDERED events A

e R:(*A*) —ROOT event R contains zero or more ORDERED

events A

R: [A] — ROOT event R may contain optional event A
e R:(A|B]|C)-ROOT event R contains either Aor Bor C

The following MP construct definitions explain the use of the MP

language:

58

2. Unordered Events: R: {A B C}

Event R contains events AB,C. Events AB,C are not ordered (no

precedes relationship between them).

Optional Event Traces for R: {A B C}

e 7 3§
A(2) B(3) C(4)

Figure 9: MP Unordered Events: R: {A B C}

3. Ordered Events: R: (AB C)

Event R contains events A, B, C. Events A, B, C are ordered: A precedes

B, B precedes C;

Event Traces for R: (A B C)

Figure 10: MP Ordered Events: R: (A B C)

4. Multiple Unordered Events: R: {* A *}

The * is used to allow the modeler to describe an event that happens zero

or more times. Given an expansion scope of n, event R has (n+1) scenarios.

59

Event Traces for R: {* A *}

A(2)

_,T
REAE - >AG)
k

A(4)

Figure 11: MP Multiple Unordered Events: R: {* A *}

5. Multiple Ordered Events: R: (* A *)

This sequence denotes a set of zero or more events of type A with an
ordering relation between them. Given an expansion scope of n, event R has

(n+1) scenarios.

Event Traces for R: (* A %)

Figure 12: MP Multiple Ordered Events: R: (* A %)

60

6. Optional Events: R: [A]

This sequence denotes an optional event A. Event R has two scenarios:

one scenario where R is empty, and one scenario where R contains A.

Optional Events for R: [A]

R(1)

REA - >AQ)

Figure 13: MP Optional Events: R:[A]

7. Alternative Events: R: (A |B| C)

Alternative events are denoted by separating events by using vertical
bars. The following example contains three alternative events, event B, event C,
or event D. Event R has three scenarios. One scenario where R contains A, one

scenario where R contains B, and one scenario where R contains C;:

Optional Event Traces for R: (A | B | C)

RAN - >AQ)

R - >BQ)

R - >c@)

Figure 14: MP Alternative Events: R: (A| B | C)

61

8. Introduction of SHARE ALL Construct and Constraints

The construct SHARE ALL is used to describe event coordination and
system constraints. The SHARE ALL construct identifies events that can be
shared by other events. The following MP model contains two components
TaskA and TaskB with a connector between them. A Connector enables
components to interact, for example send and receive a message, call each
other and pass a parameter, or use a shared memory to deliver a data item. The
schema Send_Receive_Activity specifies the behavior of components involved in

a single transaction.

SCHEMA Send_Receive_Activity

ROOT TaskA: (Send);
ROOT TaskB: (Receive);
ROOT Connector: (Send Receive);

TaskA, Connector SHARE ALL Send;
TaskB, Connector SHARE ALL Receive;

The rule section introduces Root events TaskA, TaskB, and Connector,
while Send and Receive events are needed to specify the root event’s structure.
The event type stands for a set of event traces satisfying the event structure
defined for that type. The constraints section uses the predicate share all, which

is defined as X, Y are root events, and Z is an event type:

X, Y SHAREALL Z={v: Z|VIN X} ={w: Z | w IN Y}

TaskAQ@ — — —> Send(2)
>

Figure 15: Scenario Generated from MP Schema_Send_Receive_Activity

62

The events are represented by rectangles (red rectangles are ROOT
events, and green rectangles are non-ROOT events), and the relationships are
represented by arrows (blue dashed arrows are IN relationships, and black solid

line arrows are PRECEDES relationships).
The example of MP contains:
e TaskA(1), Connector(5), and TaskB(3) are ROOT events

e Send(2) and Receive(4) are non-ROOT events of type
TaskA

e Receive(4) is a shared event of TaskB and Connector(5)
e Send(2) PRECEDES Receive(4)

e Connector(5), TaskB(3) are IN Receive(4)

9. MP Attributes

There are two types of attributes: static and dynamic. Static attributes are
values that are set at the beginning of a model and do not change. Dynamic
attributes have a value that may change in different parts of the scenario. The
Eagle6 prototype uses static attributes that enable query language. Dynamic
attributes are reserved for future research (Auguston & Whitcomb, System

architecture specification based on behavior models, 2010).

10. MP Expansion Scope Construct

Scope is defined as the number of model iterations. The purpose of the
Expansion Scope is to limit the size of the "*" rule in order to better define the
scenario’s parameters. For example, if the test scenario requires the gun
weapon system to fire three rounds, the scenario’s scope is set to “3,” thereby
removing the infinite (**”) default parameter. In the absence of an Expansion
Scope that is detailed in the model design, setting this value will result in a finite

number of scenarios.

63

MP language by setting an expansion scope each time the “*” rule

is defined as:
(* <m-n>)
<n> is considered an abbreviation for <0-n>
(*<0-n>event *) and { * <0-n> event * }
Becomes

(*<n>event*)and{*<n>event*}

11. Example MP Model

The following example MP code contains a scenario that contains naval
guns, with each gun firing at a target. The test scenario represented in MP is as

follows:
e A minimum of 1 gun system, and a maximum of two gun systems
e Each weapon can fire zero, one, or two times, maximum.

e The result of the test can be Hit or Miss

SCHEMA: GWS_SSSTRP_Test

ROOT GWS_Cycle_Test: { * <1-2> Gun_System *},
Gun_System: (* <2> Shoot *);
Shoot: (Load Fire (Hit | Miss));

The MP code is described as follows:
MP Code: "ROOT GWS_Cycle_Test: { * <1-2> Gun_System *};

Description: The initiating event (ROOT) is called the GWS_Cycle Test.
The GWS_Cycle _Test event has 1-2 Gun_System events.

64

MP Code: "Gun_System: (* <0-2> Shoot *);

Description: The Gun_System has zero, one, or two Shoot events.

MP Code: "Shoot: (Load Fire (Hit | Miss));"

Description: The Shoot event has one event that ends in a Hit or Miss

event.

The MP code resulted in a total of 20 possible scenarios, with the scenario
with the least amount of events being 10, and the largest being 19:

65

Result @
There are 20 possible scenarios.
|“':"' |Gra phic Display ﬂ' |5t-r|'ng Display ﬁ' |E'.rent Count g
| i |Gra|:rhic Display !String Display | 10
| 2 |Graphic Display |String Display | 10
|] |Graphic Display |Etring Display | i0
| 4 |Gra|:|hi1: Display |Etrir1g Display | 10
| 5 |Graphic Display |String Display | 13
| & |Graphic Display |Etring Display | 19
| 7 |Graphic Display |String Display | i3
| =] |Gra|:|hi1: Display !Etring Display | 19
| b |Graphic Display |Etrir1g Display | 19
[10 |Graphic Display |String Display | 19
|11 |Graphic Display |String Display | 13
|12 |Graphic Display |String Display | 19
|13 |Graphic Display |String Display | 19
14 |Graphic Dizplay |String Display | 19
|15 |Graphic Display |String Display | i3
|16 |Graphic Display |String Display | 13
|17 |Graphic Display |String Display | 19
{18 |Graphic Display |String Display | 19
|19 |Graphic Display |String Display | i3
|20 |Graphic Display |String Display | 19
Figure 16: MP Example: GWS_Cycle_Test Results

66

Shoot(4) f ‘; \
Fiol

o i [\
s i

£
7 5\ Lo:d@ A Ln;d@
! "\) g
H \J.l : \-‘dj
\x Fire(_Qﬂ H Fire(ﬁﬂ
AR/
Hi:{mg Mi;s(ﬂ

Figure 17: Scenario Generated from MP Schema: GWS_Cycle_Test #3

67

Gunship_Cyclg_

~
- ~
e s

F b

Gun_System(3) Gun_System(2)

d i bt
r oy

|
I
I * | _.
I
I

»” Shoot(6) Shoot(4)

o B [
/H\ |/ Ll
™
b'f 4 4 * II\ e

Shoot(7) b Shoot(5) : B
1 E g : s po | , :
! { f % | [
. ”: i ¥ B « : s ; | : | -
¢, Load(dll | '\ Load(#)] < { Load(f)ll | . Load(8)
\\ i 4 1\1‘ i " § 8 % ! ’ 5
S - Y -
\\ Fire(18) | v Fire(15) : Fire(12) , Fire(9)
¥ \ Y
4 W o/ W
Miss(19) Miss(16) Miss(13) Miss(10)

Figure 18: Scenario Generated from MP Schema: GWS_Cycle_Test
Scenario #20

12. Small Scope Hypothesis

The gun weapon system model uses event grammar and includes the
ability to execute exhaustive testing for scenario generation within scope
(Auguston, Monterey Phoenix, or How to Make Software Executable, 2009),
(Andoni, Daniliuc, Sarfraz, & Marinov, 2002). Our hypothesis of finding unsafe
system states using a small scope size is based on Jackson’s Small Scope
Hypothesis. “Small Scope Hypothesis” (Jackson, Software abstractions: logic,
language, and analysis, 2006) (Jackson & Damon, Elements of style: Analyzing a
software design feature with a counter example detector, 1996) argues that a
high proportion of bugs can be found by testing the system within a small scope
of test cycles. The ability to introduce environmental events such as missiles,
power outages, and system failure in small scope testing

68

(Auguston, Software architecture built from behavior models, 2009) showed that
MP is able to introduce critical environmental events that have a high probability

of rendering the gun system unsafe.

Figure 19: Jackson's Small Scope Hypothesis (After Jackson, Software
abstractions: logic, language, and analysis, 2006)

Jackson's Small Scope Hypothesis that most errors can be demonstrated
on small counter examples is demonstrated in Eagle6. Eagle6 has two primary

means for evaluating software safety using relatively small scope sizes:

Exhaustive Search — Exhaustive search is the process of generating all
possible scenarios from the MP model up to a given scope, and querying the
result set. The Exhaustive Search enables the user to find scenarios that

produce counter-examples of assertions.

Random Approach — Random approach is designed to generate random
scenarios within scope to calculate statistical estimates. The purpose of this
functionality is to create estimates that are used for software safety assessments.

Summary: Jackson’s Small Scope Hypothesis graph represents the idea
that an exhaustive test within a small scope is much better than an unstructured

test with arbitrary test parameters.

69

13. Use Case Representation in MP

The following demonstration includes a simple gun weapon system use
case and the corresponding MP model. The purpose of the demonstration is to
show that MP has the capability to extract use cases from an MP model, thereby
creating the capacity for formal testing.

h Pt
"'-\.___ _‘_-'/
—_—
-ET:-
. . Sy
ey -, B |'-)
___.-Iriwﬂ-cr.‘nwr Famgst ;! i
-____,.--' . \‘__._ -__, J
0 J_F,-r""f ."'r. ""'-
B ., b
l..:l"'.'-\.__ Fzdar Speipm
A 0
R - B
.-"\ L) e S
i "‘x__ TR gt Ty
Gun Cenkote Comatal, e Taet /Lx
h " — e _"'-\._____
\ 5 ~
"'l. II|-:.::Ir.(|d Tl -H-"'-;___
"._‘ o A 2 e
/ 3 -
a.\ ; . -
\ K T
'._" — . SRR "
. o~ ", - 2 5
b4 | Gt Shin digice | el By B o A
\ - 4
b P o, SR o W
- i Mewsin Sl Prcal
Y >4
l"‘.‘ - r
'\ -
L -
L
A i
e d "
ol ", .l"’
"\‘{ Flre &7 Tamgat | - Q
" e ;

e
L

P
%

Cin M o] Frocssscs

Figure 20: Gun weapon system Fire Use Case Diagram in UML Notation

UML Actors:

e Gun Console Computer [GCC] - Sub-element of the GCS. It
interfaces with Aegis and other ship sensors and performs fire

control calculations and provides data to the GMP.

e Radar System [R3D] - 3D Air Defense and Surface Search Phased
Array Radar

70

Gun Mount Control Panel [GMCP] - Backup Operator's console
installed below the gun mount. It is used in case the main ADS

console in the combat information center goes down.

Gun Mount Processor [GMP] - One sub-element of the GCS, which
takes information from the GCC and provides services to the gun

mount

Use Cases:

14.

Radar Get Target Position - Uses the Radar information to get the

target position.

Radar Assign Target - Uses information from the Radar and Gun
Console Computer to assign the target.

Get Ship Altitude - Calculates the ship's current altitude.
Get Ship Speed - Calculates the ship's current speed.

Aim Target - Uses the information from the Gun Mount Control
Panel Actor and Gun Console Computer Actor, as well as the Get
Ship Altitude and Get Ship Speed Use Cases to set the gun aiming

function.

Fire At Target - Uses information from Gun Mount Processor and

Gun Console Computer to execute a fire command.

Use Case MP Model

ROOT GunConsoleComputer_activity: {

RadarAssignTarget
AimTarget

FireAtTarget

71

ROOT RadarSystem_activity: {

RadarAssignTarget

I3

RadarAssignTarget: {
RadarGetTargetPosition

I3

ROOT GunMountControlPanel_activity: {
AimTarget
FireAtTarget

I3

AimTarget: {
GetShipAltitude
GetShipSpeed

I3

ROOT GunMount_activity: {
FireAtTarget
3

GunConsoleComputer_activity,
FireAtTarget;

GunConsoleComputer_activity,
RadarAssignTarget;

GunConsoleComputer_activity,
ALL AimTarget, FireAtTarget;

GunMount_activity SHARE ALL

RadarSystem_activity SHARE ALL

GunMountControlPanel_activity SHARE

72

The following figure represents a scenario generated from the MP model:

Radarﬁyslem_-_ ----- > _Sadarhs5ignTargetf2] - — —*» RadarGefTargetPosition(s)
GunConsoleCompulerseiuIIN > AmTarget(d) > GetShipSpeed(T)!
GunMuuntCnnfrnlE':’i_ GETEhIpﬁﬁITUdE{ﬁ}

i GunMnunLﬁ“

S I FJreAtTargel{d;l

Figure 21: Example of Use Case Modeling via MP

In UML, Uses Case designs may contain conditional nodes. Use Case
views generated by MP are single views of Use Case scenarios which clarify

potential system behavior.

15. Evaluation of MP

MP has several features that apply to the gun weapon system software

safety domain:

e MP provides a high level of abstraction-The MP modeling
methodology has the capability to model system behavior at the
abstract level without any detailed information about the specific
system (Rivera, 2010). This attribute allows for testing and
debugging earlier in the acquisition life cycle, as there is no need to
continue the acquisition process if safety-related issues are found

during the initial stages of evaluation.

e MP supports continuous refinement—The ability to insert an event
such as a missile strike, power outage, or any other environmental
event is critical for testing a potential system change. Systems
work well in the lab. MP allows for the ability to test using an
environment model. The ability to bring together the environment

and the system in the same model is a new development. MP

73

allows for this new capability (Auguston & Whitcomb, System

architecture specification based on behavior models, 2010).

e The MP framework provides high-level abstractions that may be
used to analyze system behavior by checking assertions (Rivera,
2010). Having the ability to quickly test a potential system change
without needing specific system details streamlines the acquisition

process while increasing the fidelity of the evaluation process.

e The Use Case example demonstrates that MP supports the ability
to generate and extract different views from an MP model. The
ability to provide stakeholders graphical representations of potential
scenarios that may end in a hazard state is necessary.
Additionally, because MP supports formal methods, testing using
assertions has a high level of fidelity, given that the model does an

exhaustive search for all counter-assertions within scope.

MP provides the means to describe environmental behavior, which is why
it was chosen as the modeling tool of choice for the “Eagle6 Prototype Software

Architecture Modeling Software,” which is described later in this dissertation.

E. PROTOTYPE NAVAL GUN WEAPON SYSTEM MODEL

The gun weapon system model found in Appendix A is a model written
entirely in MP. It utilizes attributes in order to enable the evaluation of system

properties.

1. The Purpose of the Naval Gun Weapon System Model

The design of the gun weapon system model is meant to satisfy the

following two requirements:

e Assertion-checking via an exhaustive generation of scenarios within

scope.

e Defining model properties in order to determine the probability of a

particular scenario.

74

2. Introduction to the Model

The gun weapon system model found in Appendix A is comprised of all
system components identified in Chapter IIl.A, "Description of Naval Gun weapon
system.” The model event begins with the R2D Radar identifying a target, and

ends with a Gun Console Computer Open Fire command.

3. Gun Weapon System Model Properties

Each system in the model has a root event that describes the
system activity. The following is a list of systems used in the gun weapon system
model, with a list of included events that make up the ROOT activity. Also
included in each section are the test results for Scope, Total Scenarios, and the
Total Processing Time.

Scenario Generation Result Definitions:
e Scope — Total scenarios generated from Eagle6

e Total Scenarios — The total number of possible scenarios within the

model scope.

Processing Time — The amount of time it took for Eagle6 to generate an

exhaustive search for all possible scenarios within scope.

ROOT R2D_activity - the activity of AN/SPS-67 [R2D] - 2-D Surface Search
Rotating Radar

e R2D displayNewTarget - R2D displays a new target on the screen

MP Model:
ROOT R2D_activity: {*
R2D_displayNewTarget // R2D displays a new target on the screen
*}1
Note: The notation represents unordered events that may happen
simultaneously.

Model Results:
Scope: 1
Total Scenarios: 2
Processing Time: 0.01 Seconds

75

ﬂzn_actﬁ‘ — » R2D_displayNewTarget(2)

Figure 22: Scenario Generated from MP Schema: Gun weapon system Model
R2D_activity

ROOT CD_activity - the activity of C&D [CD] - Command and Decision.

The software system that performs all functions within the Aegis combat system
e CD_spotNewTarget - CD spots a new target on R2D screen
e CD_ignoreTarget - CD ignores target

e CD _request GCC_setTarget - CD requests GCC to set target (requires

more information about the target)
e CD_wait GCC_setTarget - CD waits for GCC to set target
e CD targetLost - CD loses target

e CD followTarget - CD follows target movements and waits to see what

happens
e CD_request_ GCC_openFire - CD requests GCC to open fire at target

e CD_wait GCC_openFire - CD waits for GCC to open fire

MP Model

ROOT CD_activity: {* CD_spotNewTarget *};
CD_spotNewTarget: (// CD spots a new target and waits for R2D
R2D_displayNewTarget // R2D displays a new target
(CD_ignoreTarget // CD ignores target

| (CD_request_GCC_setTarget //[Requests GCC to set target

76

CD_wait_GCC_setTarget // CD waits for GCC to set target
((GCC_targetNotSet // GCC falils to set target
CD_targetLost) |
(GCC _targetSet /| GCC sets the target and returns target info
CD_followTarget // CD follows target and waits
(CD_ignoreTarget // CD ignores target
| (CD_request_GCC_openFire // CD requests GCC to open fire
CD_wait_ GCC_openFire // CD waits for GCC to open fire
(GCC_openFireFailed // GCC failed to open fire
| targetMissed // target is missed
| targetHit))))))))); //target is hit
I

R2D_activity, CD_activity SHARE ALL R2D_displayNewTarget;

Il

Model Results:
Scope: 1
Total Scenarios: 7

Processing Time: 0.01 Seconds

77

v
Ch_spotdcwTansed(2)

N20_cis prayewTarged|s

e
&
-
j_/

O request GCC. sefTangetdy = I

S e s - e
-
p

.-

= { ! 3 i
] ' |
- # i 2 i
- E] . J |
F b . ;

COowalt COC setinrgeticMl -+ '
| -

= i i i /
; |

i i v |
¥ . ; !

GLL_targetSeliay 3

- i .
'|! P H II.'
J.) b !
i

CO_faboaTarges(T|

{
k : I
£]
& i
1
E . I

O request GO openFinsE 4 J

CO_walt DOC_admen Fire(E) i

.
I
\ i
:
=

LCC_openFireFalediii)

Figure 23: Scenario Generated from MP Schema: CD_activity Scenario #7

ROOT GCC_activity - The activity of Gun Console Computer [GCC]-Sub-
element of the GCS. It interfaces with Aegis and other ship sensors and

performs fire control calculations and provides data to the GMP

e GCC_setTarget - GCC sets a target (waits for CD to request
setTarget and returns target information)

0 GCC_targetNotSet - GCC fails to work

0 GCC _request_R3D_setTarget - GCC requests R3D to set

target (requires more information about the target)

78

0 GCC_wait_R3D_setTarget - GCC waits for R3D to set

target

0 GCC_targetSet - GCC sets the target and returns target info
to R3D

e GCC_openFire - GCC open fires on target (waits for CD to request

openFire and opens fire)

0 GCC_openFireFailed - GCC is not working and it fails to
open fire

0 GCC_request_ GMP_openFire - GCC requests GMP to

open fire

0 GCC_wait_ GMP_openFire - GCC waits for GMP to open
fire

Model Results:
Scope: 2
Total Scenarios: 157

Processing Time: 1.15 Seconds

79

/
i 5
GLC setlangetis]
= S
-
o bl 1
- U ; 4
T TRy
CI request GEC seiianceiidl -~ . . SoC_aperFire(l)
o Sl S
£ -
e g ¥ - [%%
/ A ED . - j’f i - s %
3 i a g | oET
GCC_requadl RID emeGRIR Y ¢ ¢ CO_request GEC_openFiteBl S . |

B g .- !
o 3 ! & ¢ 1
1 -
7 i % ! o
s v i i RO

GCC_wail B0 s={Targeil] A ; GCC_;I:qu:ELGMP_DpﬂrfiﬁHIIr |

| ! _
: . & =
! h
Y &

A

3 i
KL targetSeti) 4 GCL_wad GMP openlirei{df 5
s P
! ;
) s
L4 ¥

GO farmed3as) targerER|1T]

Figure 24: Scenario Generated from MP Schema: GCC_activity Scenario #13

ROOT GMP_activity - the activity of Gun Mount Processor AN/UYK-44
EP/OSM [GMP]-One sub-element of the GCS, which takes information from the
GCC and provides services to the gun mount.

o GMP_answerRequest GCC_openFire - GMP answers request
from GCC to open fire (waits for GCC to request openFire and

requests the same to GMCP)

0 GMP_openFireFailed - GMP is not working and it fails to
open fire

o0 GMP_answerRequest GMCP_ossData - GMP answers a
request from GMCP for optical sight target data (it waits for a

request and it sends data)

= GMP_request_CDC_ossData - GMP requests CDC

oss data

80

= GMP_wait_CDC_ossData - GMP waits for CDC oss

data

= GMP_failReceiving CDC_ossData - GMP does not
receive oss data from CDC

= GMP_receive_CDC_ossData - GMP receives 0ss
data from CDC

Model Results:
Scope: 3
Total Scenarios: 1885

Processing Time: 2.14 Seconds

81

Figure 25: Scenario Generated from MP Schema: GMP_activity Scenario #96

82

ROOT CDC_activity - the activity of Optical Sight System MK 46 Mod 1-
Control Display Console MK 132 Mod 0 [CDC]-The operator console used to
control the MK46 Optical Sight

e CDC_answerRequest GMP_ossData - CDC answers the request
from GMP for oss data (waits for GMP to request oss data and

provides it)

0 CDC _request_ EOD ossData - CDC request EOD oss data
(thermal and daylight)

0 CDC_wait_EOD_ossData - CDC waits for oss data from EOD

o CDC_failReceiving_EOD _ossData - CDC does not receive

oss data from EOD

0 CDC receive_EOD ossData - CDC receives oss data from
EOD

ROOT CDC_activity Model Results:
Scope: 4
Total Scenarios: 121

Processing Time: 0.08 Seconds

83

Figure 26: Scenario Generated from MP Schema: CDC_activity Scenario #85

84

ROOT EOD_activity-the activity of Optical Sight System MK 46 Mod 1-
Electro-Optic Director MK 85 Mod 1 [EOD]-The Optical Sight director system
(installed above the bridge) that rotates and elevates per operator's commands.

The TV, IR, and laser rangefinder sensors are installed on the director, which

points them in the right position

e EOD_answerRequest CDC_ossData - EOD answers the request

from CDC of oss data (waits for CDC to request oss data and

provides it)

(0]

EOD_requestDaylightSensorData - EOD requests data

from daylight sensor

EOD _failGettingDaylightSensorData - EOD fails to get

data from daylight sensor

EOD_receiveDaylightSensorData - EOD receives data

from daylight sensor

EOD_requestThermalSensorData - EOD requests data

from thermal sensor

EOD_failGettingThermalSensorData - EOD fails to get

data from thermal sensor

EOD_receiveThermalSensorData - EOD receives data

from thermal sensor

ROOT EOD_activity Model Results:

Scope: 5

Total Scenarios: 1365

Processing Time: 1.91 Seconds

85

= EOD_answerRequest COC ossDatail)

" d s

Figure 27: Scenario Generated from MP Schema: EOD_activity Scenario #13

ROOT GMCP_activity-the activity of Gun Mount Control Panel MK 437
Mod 1 [GMCP]-Backup Operator's console installed below the gun mount. It is

used in case the main ADS console in the combat information center goes down

0 GMCP_answerFireRequest - GMCP answers a fire request when
displayed on screen (waits for a fire request to be displayed on the
screen and it starts fire procedures)

o0 GMCP_displayOpenFireRequest - GMCP displays an

open fire request on screen
0 GMCP_openFireFailed - GMCP fails to open fire

86

o0 GMCP_request_ GMP_ossData - GMCP requests optical
sight system target data from GMP

o GMCP_wait_ GMP_ossData - GMCP waits for optical sight
system data from GMP

o GMCP_failReceiving_ GMP_ossData - GMCP does not

receive oss target data from GMP

0 GMCP_receive_GMP_ossData - GMCP receives optical
sight system data

o GMCP_send_GM_openFireCommand - GMCP sends GM

an open fire command

o GMCP_wait_GM_openFireCommand - GMCP waits for
GM to open fire

ROOT GMCP_activity Model Results:
Scope: 5
Total Scenarios: 1365

Processing Time: 1.91 Seconds

87

Figure 28: Scenario Generated from MP Schema: GMCP_activity Scenario #27

88

ROOT GM_activity-the activity of Gun Mount EX 45 Mod 4 [GM]-The 5”

gun mount. Holds 20 rounds in the drum and fires 18-20 rounds per minute.

o GM_answer_ GMCP_openFireCommand - waits for GMCP to send

an open fire command and it opens fire
o0 GM_launchMissile - GM launches a missile

0 GM_waitForMissileToHit - GM waits for the missile to hit

the enemy target
o targetHit - target is hit

o targetMissed - target is missed

ROOT GM_activity Model Results:
Scope: 9
Total Scenarios: 1023

Processing Time: 1.97 Seconds

89

GR_answer_GMCP_op:
i

T

T

= £

Figure 29: Scenario Generated from MP Schema: GM_activity Scenario #29

90

ROOT R3D_activity-the activity of AN/SPY-1D [R3D]-3-D Air Defense
and Surface Search Phased Array Radar

0 R3D_setTarget - R3D sets target on radar (it waits for GCC to

request and returns additional information about target)
0 R3D_targetNotSet - R3D manages to set target

0 RS3D_targetSet - R3D fails to set target

Code:

ROOT R3D_activity: {*R3D_setTarget*}; // R3D sets a target

R3D_targetNotSet, R3D_targetSet;

R3D_setTarget: (// R3D sets target and waits

GCC _request_R3D_setTarget // waits for GCC response
(R3D_targetNotSet // R3D manages to set target

| R3D_targetSet));// R3D fails to set target

R3D_activity, GCC_activity SHARE ALL GCC _request_R3D_setTarget,

ROOT R3D_activity Model Results:
Scope: 9
Total Scenarios: 1023

Processing Time: 9.57 Seconds

91

Figure 30: Scenario Generated from MP Schema: R3D_activity Scenario #53

92

a. Explanation of Event Attributes

There are two types of attributes: static and dynamic. Static
attributes are values that are set at the beginning of a model and do not change.
Dynamic attributes have a value that may change in different parts of the
scenario. The Eagle6 prototype uses static attributes that enable query
language. Dynamic attributes are reserved for future research. For more details
on Dynamic attributes, see (Auguston & Whitcomb, System architecture

specification based on behavior models, 2010).

Environmental Behavior

Events and schemas are used to model environmental
behavior in the same way we model system behavior. Attributes are properties
of events. For example, the following attribute
"Req_Num_Man_Approv_For_Cmd" is used to measure the total number of
manual approvals required to execute an event. The environmental behavior is
the manual approval, such that the system and the environment both share the

event. The following attributes are used within the gun weapon system model:

e Max_Watts - A numeric value of the amount of Watts required to

execute the event. The default value is 0.

e Network Bandwidth_Req_MB - Amount of network bandwidth
required to transmit the event response. The measurement for this

attribute is MB, and the default value is 0.

e Total Processing_Time_Sec - Total time required for the event to
elapse. The measurement for this attribute is seconds, and the

default value is 0.

e Reg_Num_Man_Approv_For Cmd - Total number of manual

approvals required to execute an event. This attribute is used to

93

find scenarios where the number of manual approvals required to
process an OpenFire command exceeds the acceptable limit. The

default value is zero.

94

Table 6: Gun Weapon System Model Events and Attributes

R2D_displayNewTarget: <Max_Watts=90, Network_Bandwidth_Req_MB=1.5, Total_Processing_Time_Sec=1.5,
Reg Num_Man_ Approv_For Cmd=1>;

CD_request_GCC_setTarget: <Max_Watts=120, Network Bandwidth_Req_MB=1.0, Total_Processing_Time_Sec=1.0,
Req_Num_ Man_Approv_For Cmd=1>;

CD_wait GCC_setTarget: <Max_Watts=10, Network Bandwidth Req_MB=0.1, Req_ Num_ Man_Approv_For Cmd=1>;

GCC_request_R3D_setTarget: <Max_Watts=100, Network_Bandwidth_Req_MB=1.0, Total_Processing_Time_Sec=1.0,
Reg_Num_Man_Approv_For_Cmd=1>;

GCC_wait R3D_setTarget: <Max_Watts=8, Network Bandwidth Req MB=0.1, Req Num_Man_Approv_For Cmd=1>;

R3D_targetSet: <Max_Watts=120, Network_Bandwidth_Req_MB=2.0, Total_Processing_Time_Sec=2.0, Reg_Num_Man_Approv_For_Cmd=1>;

GCC_targetSet: <Max_Watts=120, Network_Bandwidth_Req_MB=2.0, Total_Processing_Time_Sec=2.0, Req_Num_Man_Approv_For_Cmd=1>;

CD_followTarget: <Max_Watts=160, Network_Bandwidth_Req_MB=4.0, Total_Processing_Time_Sec=0.5, Req_Num_Man_Approv_For_Cmd=1>

CD_request_ GCC_openFire: <Max_Watts=60, Network_Bandwidth_Req_MB=1.0, Total_Processing_Time_Sec=0.5,
Req_Num_Man_Approv_For Cmd=2>;

CD_wait_GCC_openFire: <Max_Watts=5, Network Bandwidth_Req_MB=0.2, Req_ Num_Man_Approv_For_Cmd=2>;

GCC_request_GMP_openFire: <Max_Watts=60, Network_Bandwidth_Req_MB=1.0, Total_Processing_Time_Sec=0.5,
Req_Num_Man_Approv_For Cmd=2>;

GCC_wait GMP_openFire: <Max_Watts=5, Network Bandwidth_ Req MB=0.3, Req_Num_Man_Approv_For_Cmd=2>;

GMCP_displayOpenFireRequest: <Max_Watts=140, Network_Bandwidth_Req_MB=2.0, Total_Processing_Time_Sec=1.0,
Req_Num_Man_Approv_For_ Cmd=0> ;

GMCP_request_ GMP_ossData: <Max_Watts=100, Network_Bandwidth_Req_MB=2.5, Total_Processing_Time_Sec=2.0,
Req_Num_Man_Approv_For Cmd=1>;

GMP_request_CDC_ossData: <Max_Watts=100, Network_Bandwidth_Req_MB=2.0, Total_Processing_Time_Sec=1.5,
Req_Num_Man_Approv_For Cmd=1>;

GMP_wait CDC ossData: <Max_Watts=50, Network Bandwidth Req MB=0.5, Req Num_Man_Approv_For Cmd=1>;

CDC request_EOD_ossData: <Max_Watts=110, Network_Bandwidth_Req_MB=2.0, Total_Processing_Time_Sec=1.5,
Req_Num_Man_Approv_For Cmd=1>;

CDC wait EOD ossData: <Max_Watts=100, Network Bandwidth Req MB=1, Req_ Num_ Man_Approv_For Cmd=1>;

EOD_requestDaylightSensorData: <Max_Watts=80, Network Bandwidth_Req_MB=1.0, Total_Processing_Time_Sec=1.0,
Req_Num_Man_Approv_For Cmd=1>;

EOD_receiveDaylightSensorData: <Max_Watts=120, Network_Bandwidth Req_MB=3.0, Total_Processing_Time_Sec=2.5,
Req_Num_Man_Approv_For Cmd=1>;

95

EOD_requestThermalSensorData: <Max_Watts=80, Network_Bandwidth_Req_MB=1.0, Total_Processing_Time_Sec=1.0,
Req_Num_Man_Approv_For Cmd=1>;

EOD_receiveThermalSensorData: <Max_Watts=120, Network_Bandwidth_Req_MB=3.0, Total Processing_Time_Sec=2.5,
Reg_Num_Man_Approv_For_Cmd=1>;

CDC_receive_EOD_ossData: <Max_Watts=150, Network_Bandwidth_Req_MB=3.5, Total_Processing_Time_Sec=3.0,
Reg_Num_Man_Approv_For_Cmd=1>;

GMP_receive_CDC_ossData: <Max_Watts=120, Network_Bandwidth_Req_MB=2.5, Total_Processing_Time_Sec=2.0,
Reg_Num_Man_Approv_For_Cmd=1>;

GMCP_receive_ GMP_ossData: <Max_Watts=120, Network_Bandwidth_Req_MB=2.5, Total_Processing_Time_Sec=1.5,
Req_Num_Man_Approv_For Cmd=1>;

GMCP_wait GMP_ossData: <Max_Watts=10, Network Bandwidth Req_MB=0.5, Req_Num_Man_Approv_For_Cmd=1>;

GMCP_send_GM_openFireCommand: <Max_Watts=100, Network_Bandwidth_Req_MB=1.0, Total_Processing_Time_Sec=1.0,
Req_Num_Man_Approv_For_ Cmd=2>;

GMCP_wait GM_openFireCommand: <Max_Watts=10, Network Bandwidth Req_MB=0.5, Req_Num_Man_Approv_For_Cmd=2>;

GM_launchMissile: <Max_Watts=250, Network_Bandwidth_Req_MB=2.0, Total_Processing_Time_Sec=2.5,
Req_Num_Man_Approv_For Cmd=2> ;

GM_waitForMissileToHit: <Max_Watts=50, Network Bandwidth_Req_MB=0.5, Total Processing_Time_Sec=0.5,
Req_Num_Man_Approv_For Cmd=0> ;

96

4. Testing Architectural Design Via Formal Queries

Identifying unintended system behavior is paramount when executing a

software system safety assessment.

The concept “Chain” is defined as a set of events with the property that
any two events from the chain (x and y) have a PRECEDES relationship between
them (either x PRECEDES vy, or y PRECEDES x). The set that contains all
Chains of scenario s is described as Chain(s). Given a scenario s, we define A

as a chain of s as:

The formal design of these models creates a framework for system
behavior properties to be expressed as computations over event traces. Eagle6
uses the MP framework and therefore supports extracting different views from
the model, and verification of behavior properties within a given scope.
Advantages of this approach compared with the common simulation tools are as

follows:

e Means to write assertions about the system behavior and tools to verify

those assertions.
e Exhaustive search through all possible scenarios (up to the scope limit).

e The support for verifiable refinement of the architecture model, up to

design and implementation models.

e Integration of the architecture models with environment models for
defining typical scenarios (use cases) and verifying system’s behavior for

those scenarios.

The application of the gun weapon system model has the following two
major functions: (1) testing the gun weapon system architectural design; and (2)
generating random scenarios according to predefined probabilities with the

purpose of getting different types of estimates.

97

a. Testing Architectural Design Via Formal Queries

The result of executing an MP model is a set of valid event traces

(scenarios):

Figure 31: MP Model Scenario Generation Process

The following query language represents how the user obtains a

set of scenarios by constructing dynamic queries via the Eagle6 user interface:

Figure 32: Query Building Process

Eagle6 has a graphical interface that enables the user to create
queries. The graphical interface has three types of queries available in
parameterized form as macro commands that can be used individually, or

combined for a more refined ResultSet:
b. Macro Commands

Query type 1: EventCount

EventCount is used to return only scenarios that have a min/max
number of total events within the scenario. The EventCount Macro Command

has the following structure:

98

Notation:

EventCount(EventType, Operator, Value)
Parameters required:

e EventType — a valid event type from the MP model

e Operator — one of the following:

e Value — numerical value

Example:

The following macro command returns all scenarios that have > 1

events of type GCC_openFireFailed:

ResultSet = EventCount(GCC_openFireFailed, >=, 1)

Query type 2: SliceSum

SliceSum is used to return only scenarios that have a min/max

number of total events that happen in parallel within the scenario. The SliceSum

Macro Command has the following structure:

SliceSum(AttributeName, Operator, Value)

Parameters required:
e AttributeName — a valid attribute name from the MP model
e Operator — one of the following: <, <=, =, >, >=
e Value — numerical value

Notation:

99

Example:

The following query returns all scenarios that have at least one

Slice of events where the attribute MaxWatts aggregate sum > 220:

SliceSum(MaxWatts, >=, 220)

Query type 3: ChainSum

ChainSum is used to return only scenarios with events that happen

in sequence and also have attribute properties that meet the query definition.

The ChainSum Macro Command has the following structure:

ChainSum(AttributeName, Operator, Value)
Parameters required:

e AttributeName — a valid attribute name from the MP model

e Operator — one of the following:

e Value — numerical value

e Sum - the total sum of the Attribute values found in the
ResultSet

Notation:

Example:

The following query returns all scenarios that have at least one

events that has an aggregate sum of the attribute

Total_Processing_Time_Sec that is >= five:

100

ChainSum(Total_Processing_Time_Sec, >=, 5)

Query type 4: Combined Query

The Eagle6 interface has the ability to create combined queries.
The ResultSet is generated from a combination of the predefined macro

commands 1-3:

ResultSet = MacroCommandl N MacroCommand?2

The intersection of sets MacroCommandl and MacroCommand2 is
the set of all elements of MacroCommandl which are also elements of
MacroCommand?2.

Example:

The example represents a query that combines the Queries 1-3,

and returns scenarios that meet the all of the queries’ criteria:

Minimum of one scenario where the GCC_openFireFailed event
Count >= 1 AND a minimum of one scenario where parallel events that have the

attribute MaxWatts have an aggregate sum >=220.

ResultSet = {(EventCount(GCC_openFireFailed, >=, 1)) N
(SliceSum(MaxWatts, >=, 220))}

F. IDENTIFYING POTENTIAL SOFTWARE SAFETY HAZARD STATES

When modeling the naval gun weapon system (Appendix A), we use both
exhaustive and random scenario generation to evaluate software safety.
Appendix B contains the Gun weapon system Assertion Library. The Exhaustive
Search is the process of generating all possible scenarios from the MP model up
to a given scope. The exhaustive search enables the user to find scenarios that

produce counter-examples of assertions. The Random Approach is used to

101

generate estimates that are used for software safety assessment. Eagle6

generates random scenarios within scope to calculate statistical estimates.

Exhaustive Search

The exhaustive search method enables the user to input query criteria that
customizes the result set returned by the software. Limiting result sets to
important scenarios enables users to see only the data in which they are
interested.

1. Modeling Demonstration: QUERY GWSMaxWatts

Hazard State: Find scenarios where the gun weapon system may require
more Watts than the gun weapon system can produce.

Test Definition: Return all scenarios within scope that have at least one
Slice that contains events that have the attribute MaxWatts, and the sum of the
attribute MaxWatts is >= 220.

Macro Command:

ResultSet = SliceSum(MaxWatts, >=, 220)

102

Scenario Filters @

- EventCount Filters: @ show

- SliceSum Filters: @ wid=

Attribute |operatar value

EI Max_Wts @ iEE' @ i 20 @
E =1® [E® | @®
E B2l - =@ | e
E =@ me | e
E 1@ - ~e | @

- ChainSum Filters: @ show

[Run Scenario Generation l (2]

Figure 33: QUERY GWSMaxWatts - Scenario Query

Result @

There are 3 possible scenarios.

SliceSum("Max_Watts","==","220"])
Mo. |Graphic Display g String Display 6 |g.

1 |Graphic Display String Display __
2 |Graphic Display String Display _—
2 |Graphic Display String Display _—
4 |Graphic Display String Display __
5 |Graphic Display String Display __

Figure 34: QUERY GWSMaxWatts - Results

The graphic contains the following information:

o0 Graphic Display - A hyperlink that is programmed to display the

graphical image of the scenario in a new browser.

103

o Total Event Count - The total number of events that are included in

the scenario.

o0 SliceSum(Max_Watts) for parallel events - The column is used to
display scenario details that evaluate attributes. The "Show
Details" button displays the individual events and their
corresponding attribute values. The background color orange is
used to alert the user that one or more events do not have an
attribute value assigned. The textual output value for attribute
values that are null is empty. The color green is used to alert the

user that all events have assigned attribute values.

104

o)
« O

o
S
S
2
I

Scenario Generated from QUERY GWSMaxWatts - Graphical

Display

105

The following graph represents a close-up view of the events that are
identified in the SliceSum Query:

L) - f 3
*
3 : K

Figure 36: Scenario Generated from QUERY GWSMaxWatts - Zoom Slice
View

106

Summary: The Software Safety Hazard State description ““Find scenarios

where the gun weapon system may require more power than the gun weapon

”n

system can produce™ resulted in the test scenario containing the Macro Query

SliceSum(MaxWatts, >=, 220). The query demonstration showed the query
returned five possible scenarios where the gun weapon system could result in a
Hazard State. The following is a list of events contained in the slice (that

satisfied the query) from the scenario:

The slice from the scenario contains the following events:
Events (Sum of MaxWatts = 290)

e CD_wait_ GCC_openFire(10).MaxWatts =5

e GCC_wait GMP_openFire(22).MaxWatts =5

e GMCP_wait GMP_ossData(29).MaxWatts =10

e GMP_wait_CDC_ossData(36).MaxWatts =50

e CDC_wait EOD_ossData(41).MaxWatts =100

e EOD_receiveDaylightSensorData(46).MaxWatts =120

2. Modeling Demonstration: QUERY Network_Capacity _Check

Hazard State: Find scenarios where the gun weapon system may require

more network bandwidth than the gun weapon system network can provide.

Test Description: Find a set of scenarios that have at least one slice with
the following property: the sum of the attribute Max_Network _Bandwidth for all
events that belong to that slice must be >= five .

Macro Command:

SliceSum(Max_Network Bandwidth, >=, 5)

107

Scenario Filters @

- EventCount Filters: @ show

- SliceSum Filters: @ Hid=

Attribute COperator Value

il Network_Bandwidth_Req MB || @ i|_>_=_E| e i 5 @
E =® ‘ze [e
E ~@ - =@ | o}
E ~@ me [e
E ~@ me | e

- ChainSum Filters: @ show

[Run Scenario Generation]ﬁ'

Figure 37:

QUERY Network_Capacity _Check - Scenario Query

Result @

There are 4 possible scenarios.

+ |Graphic Display 0 String Display

SliceSum

("Metwork_Bandwidth_Reg_MB","s=","5")

Graphic Display String Display

Graphic Display String Display

String Display

Mo
B
£
(2 [Gra phic Display
i

Graphic Display String Display

M oo
R
R ey

Figure 38:

QUERY Network_Capacity Check - Results

108

Figure 39: Scenario Generated from QUERY Network Capacity Check -
Graphical Display

109

Summary: The Software Safety Hazard State description “Find scenarios

where the gun weapon system may require more network bandwidth than the

gun weapon system network can provide” resulted in the test scenario containing

the Macro Query SliceSum(Max_Network Bandwidth, >=, 5). The query

demonstration showed the query returned four possible scenarios where the gun

weapon system network could result in a Hazard State. The following is a list of

events contained in the slice (that satisfied the query) from the scenario:

Events (Sum of Max_Network_Bandwidth_MB: 5.5)

CD_wait_ GCC_openFire(10).Max_Network _Bandwidth_MB =0.2
GCC_wait_ GMP_openFire(22).Max_Network_Bandwidth_MB =0.3

GMCP_wait_ GMP_ossData(31).Max_Network_Bandwidth_MB
=0.5

GMP_wait_CDC_ossData(39).Max_Network Bandwidth_MB =0.5
CDC_wait_EOD_ossData(44).Max_Network_Bandwidth_MB =1

EOD_receiveDaylightSensorData(49).Max_Network _Bandwidth_M
B=3

3. Model Demonstration: QUERY GCC_OpenFireFail

Hazard State: Find scenarios where the gun weapon system may

experience the failure of a Gun Control Center Open Fire Command.

Test Definition: Find a set of possible hazard state scenarios where the

CGG_openFire event happens at least once.

Macro Command:

ResultSet = EventCount(GCC_openFireFailed, >=, 1)

110

Scenario Filters @

- EventCount Filters: @ Hide

Event Dperator value

il GCC_openFireFaied [~ @ i 2] i 1] Q
E 1@ I me | ©
: =0 e | e
E ~1@ rme | e
B =@ -m® | e

- SliceSum Filters: @ show

- ChainSum Filters: @ show

Figure 40: QUERY GCC_OpenFireFail - Scenario Query

EventCount
String Display @ |('GCC_openFireFailed",">=","1")

Result @

There are 9 possible scenarios.

No. |Graphic Display 'ﬂ'

| 1 |Graphic Display String Display
| z |Gra|:||hic Cisplay |5trir1g Display
| 3 |Graphic Display |String Display
| 4 |Graphic Display |String Display
| 5 |Gra|:|-hi1: Cisplay |5tr|'ng Display
| & |Graphic Display |String Display
| 7 |Graphic Display |String Display
| 8 |Graphic Display |String Display
| 9 |Graphic Display |String Display

““““‘ﬁ

Figure 41:

QUERY GCC_OpenFireFalil - Results

111

._'\-\.M 3 : :
GCC_openFireFailed{11]1]
Figure 42: i

GMP_actiIEIl GMCP_sciibieal

GMP2_actifjiEa ¢D_aéi_ EoD_actibiill
GM_aciljiEEll CoC_actiiyi
GCC__ RO GG .o Epnt?“JewTargetfat}
--"“’___ - .'.'0-
-------- § x\‘:\'-n.
3 n:m’;;“ GCC selTargat{iB} R2D dlsplayhlewTéim

" ' % ; If I

1 - .4 v ! . y

' i~ "RaD_setTarget(18)] .’ '\ -..co request GCC ﬁai‘Tﬁm '

.~ R3D_targeiSel o

-

Gccz_:““ et targetSoliT 3 ;
5 v

4 ;
GCC_openFire(20) .

Scenario Generated from QUERY GCC_OpenFireFail - Graphical
Display

Summary: The Software Safety Hazard State description “Find scenarios

where the gun weapon system may experience the failure of a Gun Control

Center Open Fire Command” resulted in the test scenario containing the Macro

Query EventCount(GCC_openFireFailed, >=

1). The query demonstration

showed the query returned nine possible scenarios where the gun weapon
system could result in a Hazard State

112

4, Model Demonstration: QUERY Max_Manual_Approvals

Hazard State: Find scenarios where gun weapon system design may
result in the gun weapon system requiring >= three manual approvals to execute

an Open Fire Command.

Test Description: Find a set of scenarios that contain at least one
GCC_openFire event, and also have at least one slice of events that have the
Attribute Req_Num_Man_Approv_For_Cmd with a sum that is >= 3.

Macro Command:

ResultSet = {(EventCount(GCC_openFire, >=, 1))

(ChainSum(Req_Num_Man_Approv_For_Cmd,>=, 3))};

- EventCount Filters: @ Hid=

Event Operator value

GCC_openFire v @ »=[w] @ 1 e
| @] @ (2]
=] @ =] @ o
] @] @ (2]
] @] @ o

- SliceSum Filters: @ show

- ChainSum Filters: @ Hid=

Attribute Operator Value

Reg_MNum_Man_Approv_Far_Cmd E| (2] 3= E| (2] i 3| (7]
~ @ =@ @
~ @ =@ @
= @ =@ @

Figure 43: QUERY Max_Manual_Approvals - Scenario Query

113

Result @

There are 11 possible scenarios.

EventCount ChainSum
Mo |\Graphic Display 0 String Display 0 &ECC ._openFire",">=","1") ("Req_MNum_Man_Approv_For_Cmd",">=","3"})

| Graphic Display String Display
Graphic Display ‘E‘-bring Display

3 |Graph|'c Display |E'|-tr|'nq Display

4 |G|—=|ghrc Displav ‘Etring Display

IT

5 |Gra|::hic Display |Strir1|;| Display

Graphic Display ‘Strl'ng Display

7 |Graphic Display ‘E‘rtrl'ng Display

IT

9 |Gm|:rhic Display |E‘-trir1|:| Display

Graphic Display ‘E‘-tring Display

10 |Graphic Display ‘E‘rtring Display

IT

Graphic Display ‘Ei-trl'ng Display

Figure 44: QUERY Max_Manual_Approvals - Results

114

GCC_actity Gl RZD_ACIVGMME _ _ . CD_spotNewTarget(d)

=
e S W

- L o - ks |:'\
oL -

e i ol Y H\:L e -._ . o
- == =~ RID GGG GoC_setTarget{13)] R2D._displayNewTargeneml o' | L -
1 { F PPt '”_ R T : V |
i 3 g™ : Ty
ot 4 h
TR - o R3D_setTarget{ 18] P

A [, i
|

i et =
- CD_requast GCC_safTa

bl

i j .-, i i s i P ; |l-' .|
o % i i Sl | Wi Y
L y “he “. BGCC_reguest R0 salTa K i ?
\ ¢ T "] y s 1
1 :r‘_' e : #
L b s T ’ : !
i s v GCC wailt R3O estT I I’ !
: |I [. ., % |) ;
Y i - L. s = - ; .IJ)
I : S : i
\ Vg fﬁl‘.‘uargalﬁ (18 4 CD_wauz_;cc_sumﬂ:@ wl ;
'I . . 4 A i R r..- J.
. " - _ 3
coCI TN - coc_taroeSaiil i
; I'. = f
y 4 1 i’ ; g
. GCC_openFire(20] CD_followTargeti@ll .
. . i G
LS £ gy o o
L= J] 3 o
CO_request GCC 6
i o . CD_request GCC_cpenFire(El]
s " I.
\{; W
Rk CO_wait_GCC_openFl
; T £
GCC"npenFIrEFaﬂa@fm

Figure 45: Scenario Generated from QUERY Max_Manual_Approvals -
Graphical Display
Summary:

The Software Safety Hazard State description “Find scenarios where gun
weapon system design may result in the gun weapon system requiring >= three
manual approvals to execute an Open Fire Command” resulted in the test
scenario containing the Macro Query:

{(EventCount(GCC_openFire, >=, 1))

(ChainSum(Req_Num_Man_Approv_For_Cmd,>=, 3))}.

115

The query demonstration showed the query returned ten possible

scenarios where the gun weapon system could result in a Hazard State. The

following is a list of events contained in the slice (that satisfied the query) from

the scenario:

Events (Sum of Req_Num_Man_Approv_For_Cmd: 8)

CD_wait_GCC_openFire(10).Reqg_Num_Man_Approv_For_Cmd =2

GCC_wait GMP_openFire(22).Req_Num_Man_Approv_For_Cmd
=2

GMCP_wait_GM_openFireCommand(32).Req_Num_Man_Approv_
For_ Cmd =2

GM_launchMissile(51).Req_Num_Man_Approv_For_Cmd =2

5. Model Demonstration: QUERY GCC_ OpenFireFailed

Hazard State: Find scenarios where Gun Console Computer tries to

execute an Open Fire Command and it ends with a system timeout.

Description: Find a set of scenarios that contain the GCC_openFire

event, and also have at least one chain of events with a sum of the attribute

Total_Processing_Time_Sec that is >= five .

Macro Command:

ResultSet = {(EventCount(GCC_openFire, >=, 1))

(ChainSum(Total_Processing_Time_Sec,>=, 5))};

116

- EventCount Filters: ﬁ Hide

llz;iﬂpen Fire x| @ lgélmra |‘T|“e 1]
E 1@ - =@ o
E ~@ [z® | @
E x| @ Eeal)
E ~1© =@ | e
- SliceSum Filters: @ show

- ChainSum Filters: @ wide

|Attribute |Dperator [value
Total_Processing_Time_Sec | =] @ =[] @ 5 e
E ~]@ - =@)
- ~]@ - =@ @

Figure 46: GCC_ OpenFire Total Processing Time - Scenario Query

117

Result @

‘There are 11 possible scenarios.

Graphic Display 9

String Display

Graphic Display

String Display

Graphic Display

String Display

Graphic Display

String Display

Graphic Display

String Display

Graphic Display

String Display

Graphic Display

String Display

Graphic Display

String Display

Graphic Display

String Display

Graphic Display

String Display

Graphic Display

String Display

Graphic Display

String Display

EventCount

("GCC_openFire",

ChainSum
==""1"} |["Total_Processing_Time_Sec","==","5")

i

Figure 47:

118

GCC_OpenFire Total Processing - Results

-

GOC_reguest_RID
R3O ﬂrﬂf#t{'tar Miiﬁ_mﬂ’ TDU‘

CO_wait_GCC._selT;
Max_'¥akis: H:I

v R3D_fangeiSel(19)
L nm_w;m m

C0_folowTarget(3)
Max_Watts: 160
Metwork_Bandwidl

Figure 48: GCC_OpenFire Total Processing - Graphical Display
Summary: The Software Safety Hazard State description “Find scenarios

ends with a system timeout” resulted in the test scenario containing the Macro
Query:

where Gun Console Computer tries to execute an Open Fire Command and it
{(EventCount(GCC_openFire, >=,))

(ChainSum(Total_Processing_Time_Sec,>=, 5))}

The query demonstration showed the query returned 11 possible

scenarios where the gun weapon system could result in a Hazard State. The

following is a list of events contained in the slice (that satisfied the query) from
the scenario:

119

Events (SUM of Total_Processing_Time_Sec: 8.5 Seconds)
e R2D_displayNewTarget(2).Total _Processing_Time_Sec =1.5
e CD _request GCC_setTarget(5).Total_Processing_Time_Sec =1
e GCC_targetSet(7).Total_Processing_Time_Sec =2
e CD_followTarget(8).Total Processing Time_Sec =0.5

e CD_request GCC_openFire(9).Total_Processing_Time_Sec =0.5

e CD_wait_ GCC_openFire(10).Total Processing Time_Sec
Attribute Value Not Assigned

e GCC_openFireFailed(11).Total_Processing_Time_Sec = Attribute
Value Not Assigned

e GCC _request R3D_setTarget(14).Total Processing_Time_Sec =1

e GCC_wait_R3D_setTarget(15).Total_Processing_Time_Sec =
Attribute Value Not Assigned

e R3D targetSet(16).Total_Processing_Time_Sec =2

G. USING PROBABILITIES TO REFINE SYSTEM BEHAVIOR IN MP

Inserting event probabilities is designed to give the modeler a more
refined capability of modeling actual system behavior. Introducing event
probabilities may be used to estimate the probability of a Hazard State, as well

as the probability of an Software Safety assertion.

Eagle6 uses the Monte Carlo method of approximating an expectation by
the sample mean of a function of simulated random variables within the model

scope

The following iterative scenario generation process, and random scenario
generation process require a larger scope in order to generate statistical results

that represent actual system behavior:

120

e lterative Scenario Generation - A process that uses the Markov
Chain theory such that the ResultSet consists of a finite number of
states (scope) and some known probabilities p, where p; is the
probability of moving from state i to state j. This approach enables
the user to generate scenarios that produce counter-examples of

assertions, as well as the probabilities of those assertions.

e Random Scenario Generation - Generates random scenarios within
scope to calculate statistical estimates. The purpose of this
functionality is to create estimates that are used for software safety

assessments.

To determine probabilities of a scenario, event attributes are assigned a

probability value:
(* <0-n/ap,a;,az,as ... a,> Radar_Target_ldentified *)

The notation represents an ap probability that Radar_Target_ldentified
appears zero times, an a; probability that Radar_Target_Identified appears one

time ... an a, probability that Radar_Target_Identified appears n times.

Given a specified range for scope, the typical expression:
(* <ni1-ny> Radar_Target_ldentified *)
Becomes:
(* <ni1-ny/ag,ai,az,asz ... an2n1> Radar_Target_ldentified *)

There is an ap probability that Radar_Target_ldentified appears n; times,
an a; probability that Radar_Target_ldentified appears (n;+1) times... an anzn1

probability that Radar_Target_ldentified appears n; times.

121

Eagle6 Exhaustive Scenario Generation

The following graphic represents the Eagle6 exhaustive scenario
generation user interface options page. The options page has the ability to refine

the application output by setting parameters for three general options:

Exhaustive Scenario Generation @ |

General Options @

Default Expansion Scope: 1
Display x scenarios: 100 g
Display starting scenario no.: 1

Scenario Filters @

Figure 49: Exhaustive Scenario Generation Options

The following model demonstrates how to set the probability of an event.
In the following test, it was determined that the event Radar_Target_ldentified
had two possible outcomes: Enemy Target and Friendly Target. To better
model the operational environment, the modeler assigned the probability of an

Enemy_Target being identified 60% more often than a Friendly_Target.

EXHAUSTIVE GENERATION DEMONSTRATION:
Consider the following Model:

ROOT Radar_Target_Identified: (

(Enemy_Target | Friendly_Target)

[(In_Weapon_Range Target_Lock)]

122

(* <1-3> Target_Ready_For_Fire *));

Set following probabilities:

60% probability of event Enemy_Target happening instead of event
Friendly_Target

33.3% probability of events In_Weapon_Range and Target_Lock to
appear

20% probability of event Target Ready For Fire to appear one
time
30% probability of event Target Ready For_Fire to appear two

times

50% probability of event Target Ready For Fire to appear three
times

The following model represents the system modeling requirements:

ROOT Radar_Target_Identified: (

(Enemy_Target | <0.40> Friendly_Target)
[<0.33> (In_Weapon_Range Target_Lock)]

(*<1-3/0.20,0.30,0.50> Target_Ready_For_Fire *));

The following filter was applied to the Radar_Target_Identified model:

Scenario Flters

EventCount

[Brant [oparater|[valuea

Targ=1_Lock

......

Figure 50: Radar_Target_ldentified Filter

123

Model Results

The graphic displays the probability of all possible scenarios using the

exhaustive scenario generation approach.

Result
There are 12 possible scenarios.

Total
No. [Probability(%) |Graphic Display String Display Event

Count
[1 IE.04% IG'raphil: Display lEtrlng Display I 2
| 2 [|12.05% |Graphic Display |[string Display || 4
| 3 |20.09% |Graphic Display |[String Display li N
| 4 [3.96% |Graphic Display |[String Display | &5
| 5 [5.94% |Graphic Display ||String Display || 6
| & IEI.EI% IEraphi: Display IM I 7
| 7 [5.28% |Graphic Display ||String Display || 3
| 8 [s.03% |Graphic Display ||String Display || 4
| 9 [12.39% |Graphic Display ||String Displav TS
[10 [2.54% Eraphr: Display lSl:ring Display | 5
|11 [3.96% |Graphic Display ||String Display || &
12 [6.6% [Graphic Display [String Display [7

Figure 51: Model Results Showing Probability

Note: If the user selects query criteria on the options page, the result set

may contain probability values for scenarios that do not total 100%. This is due

to possible scenarios having been filtered from the final result set:

Result

There are 6 possible scenarios.

The probability of at least one scenario of the possible scenarios happening is 33% (probabilities sum for all possible scenarios).
pot Precedes

No. |Probability(%t]) |Graphic Display String Display ||[Ewent In Count o i EventCount{"Target Lock",">=","1")
|count oun .

[[sow Jioraphicoupiey Jphmapisiy | 5 [& [- | A

2 [5.3a% [Graphic Display |stinaDisslzx || & || s ||+ [N

4 [2.e% Graphic Display _[String Display s s N 000000000 |

5 [56% Jlcrmaohipiolay |shinapisiy || & 5 [+ |

[6% JiGrephic oispley |Emmapislay 7 [¢ [5 |

Figure 52: Model Results Showing Probability

124

The results of the Radar_Target_ldentified event, after applying the filter,
were a record set of six possible scenarios, with a probability of 33% that one of

the six events will occur.

RANDOM GENERATION DEMONSTRATION

The model is an exact copy of the model used in the exhaustive scenario

generation method demonstrated:

Consider the following Model:

ROOT Radar_Target_Identified: (
(Enemy_Target | Friendly _Target)
[(In_Weapon_Range Target_Lock)]

(* <1-3> Target_Ready_For_Fire *));

Set following probabilities:

e 60% probability of event Enemy_Target happening instead of event

Friendly_Target

e 33.3% probability of events In_Weapon_Range and Target_Lock to

appear

e 20% probability of event Target Ready For Fire to appear one

time

e 30% probability of event Target Ready For Fire to appear two

times

e 50% probability of event Target Ready For Fire to appear three

times

125

The following model represents the system modeling requirements:
ROOT Radar_Target_Identified: (

(Enemy_Target | <0.40> Friendly_Target)

[<0.33> (In_Weapon_Range Target_Lock)]

(*<1-3/0.20,0.30,0.50> Target_Ready_ For_Fire *));

Demonstration:

To generate random scenario generation, the user must select the

"Random Scenario Generation" link at the top of the options page:

© | Random Scenario Generation @

General Options @
Default Expansion Scope: 1 9

Generate x scenarios: -ID‘DD'l g

Run Scenario Generation | (2]

Figure 53: Random Scenario Generation Options

Model Results

In the following graphic, Eagle6 displays how many times each scenario
was generated and the probability for each scenario (calculated using the total

number of scenarios and the number of times each scenario appeared).

126

Result

Count se : . i : L
Mo (1000) Probability(%:) [Graphic Display String Display g.';eun:t
| 1 |78 [7.8% |Graphic Display ||String Display [TE
| 2 |iz2 [12.2% |Graphic Display |[String Display . 4
[2 |[z02 [20.2% |Graphic Display ||String Display B =
[4 |ja= [4.2% |Graphic Display |[String Display |
[5 ||s7 6.7 5% |Graphic Display |[String Display | &
[& [=0 EED |Graphic Display [String Display L
| 7 |iss [5.5% |Graphic Display |[String Display i E
[& |62 [6.2% |Graphic Display ||String Display iE
[2 [134 [13.4% |Graphic Display ||String Display U5
[1o |[zo0 EEC |Graphic Display [String Display @i s
[11 |jaz 4.7 % |Graphic Display |[String Display =
[12 |71 [7.1% |Graphic Display |[String Display [

Figure 54: Model Results Showing Probability for 1000 Generated Scenarios

H. DEMONSTRATION SUMMARY

The demonstrations 1-5 show how the Eagle6 application may improve
the current method in which the SSSTRP executes Software Safety
assessments. Demonstrations six and seven demonstrate the ability for Eagle6
to test functional requirements, which is also a part of the SSSTRP process. The
following Hazard State conditions were created to demonstrate the application of
Eagle6 to the Software Safety domain, with specific applicability to the SSSTRP

process:

e Find scenarios where the gun weapon system may require more

watts than the gun weapon system can produce.

e Find scenarios where the gun weapon system may require more
network bandwidth than the gun weapon system network can

provide.

e Find scenarios where the gun weapon system may experience the

failure of a Gun Control Center Open Fire Command.

127

e Find a set of scenarios that contain at least one GCC_openFire
event, and also have at least one slice of events that have the
Attribute Req_Num_Man_Approv_For_Cmd with a sum that is >=
3.

e Find scenarios where Gun Console Computer tries to execute an

Open Fire Command and it ends with a system timeout.

The demonstrations 1-5 show how the system and environment can be
modeled with specific focus on the ability to model system behavior. This
capability is especially helpful in the SSSTRP software safety domain as the
need exists to not only check for potential software hazard states, but also create
domain models that enable the testing of potential software with realistic
environmental events, and the probabilities associated with those events. This
approach is much more refined and allows for domain models to better reflect the
operational behavior in which the systems function. With a methodology for
modeling system behavior, and an ability to generate estimates for both
functional and nonfunctional requirements, the next step is to identify how the

proposed methodology can be integrated into the SSSTRP process.

l. PROTOTYPE SSSTRP EVALUATION METHODOLOGY

The prototype SSSTRP evaluation methodology is based on the research
of the current SSSTRP process (Chapter 1), the problems associated with the
SSSTRP evaluation process (Chapter Il), and Eagle6 capabilities that are
demonstrated in Chapter Ill). The prototype has not been tested, but is included
in this research based on the relevance to the domain. The purpose of the
prototype SSSTRP evaluation methodology is to recommend changes to the
current SSSTRP process that includes the integration of our modeling

methodology, as well as a more definitive evaluation process.

Our research demonstrates that Eagle6 was able to provide the ability to
model potential systems and how they interact with their environment. The

Eagle6 solution requires an integration plan that introduces the methodology into

128

the SSSTRP process. The prototype SSSTRP evaluation methodology is
recommended for integrating a standardized methodology for automating system

testing.

The solution to model a gun weapon system and to have the ability to test
for software safety assertions was addressed in Chapter Ill. The Prototype
SSSTRP Evaluation Methodology is designed to obtain the functional and
nonfunctiona